No Arabic abstract
We consider the nonequilibrium dynamics of a charged active Brownian particle in the presence of a space dependent magnetic field. It has recently been shown that the Lorentz force induces a particle flux perpendicular to density gradients, thus preventing a diffusive description of the dynamics. Whereas a passive system will eventually relax to an equilibrium state, unaffected by the magnetic field, an active system subject to a spatially varying Lorentz force settles into a nonequilibrium steady state characterized by an inhomogeneous density and divergence-free bulk fluxes. A macroscopic flux of charged active particles is induced by the gradient of the magnetic field only and does not require additional symmetric breaking such as density or potential gradients. This stands in marked contrast to similar phenomena in condensed matter such as the classical Hall effect. In a confined geometry we observe circulating fluxes, which can be reversed by inverting the direction of the magnetic field. Our theoretical approach, based on coarse-graining of the Fokker-Planck equation, yields analytical results for the density, fluxes, and polarization in the steady state, all of which are validated by direct computer simulation. We demonstrate that passive tracer particles can be used to measure the essential effects of the Lorentz force on the active particle bath, and we discuss under which conditions the effects of the flux could be observed experimentally.
Dense assemblies of self-propelled particles undergo a nonequilibrium form of glassy dynamics. Physical intuition suggests that increasing departure from equilibrium due to active forces fluidifies a glassy system. We falsify this belief by devising a model of self-propelled particles where increasing departure from equilibrium can both enhance or depress glassy dynamics, depending on the chosen state point. We analyze a number of static and dynamic observables and suggest that the location of the nonequilibrium glass transition is primarily controlled by the evolution of two-point static density correlations due to active forces. The dependence of the density correlations on the active forces varies non-trivially with the details of the system, and is difficult to predict theoretically. Our results emphasize the need to develop an accurate liquid state theory for nonequilibrium systems.
Odd viscosity arises in systems with time reversal symmetry breaking, which creates non-dissipative effects. One method to probe changes in viscosity is to examine the dynamics of a single probe particle driven though a medium, a technique known as active rheology. We show that active rheology in a system with odd viscosity and no quenched disorder reveals a variety of novel effects, including a speed up of the probe particle with increasing system density when the background medium creates a velocity boost of the driven particle due to the Magnus effect. In contrast, the probe particle velocity in the dissipation-dominated limit monotonically decreases with increasing system density. We also show that the odd viscosity imparts a Hall angle to the probe particle, and that both the Hall angle and the velocity boost depend strongly on the drive. These results should be general to other systems with odd viscosity, including skyrmions in chiral magnets.
We combine numerical and analytical methods to study two dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi long range translational order, as well as a moving phase with quasi-long range velocity order. The translational order in the moving phase is significantly influenced by alignment interaction. For Vicsek-like alignment, the translational order is short-ranged, whereas the bond-orientational order is quasi-long ranged, implying a moving hexatic phase. For elasticity-based alignment, the translational order is quasi-long ranged parallel to the motion and short-ranged in perpendicular direction, whereas the bond orientational order is long-ranged. We also generalize these results to higher dimensions.
Inspired by recent experimental observation of patterning at the membrane of a living cell, we propose a generic model for the dynamics of a fluctuating interface driven by particle-like inclusions which stimulate its growth. We find that the coupling between interfacial and inclusions dynam- ics yields microphase separation and the self-organisation of travelling waves. These patterns are strikingly similar to those detected in the aforementioned experiments on actin-protein systems. Our results further show that the active growth kinetics does not fall into the Kardar-Parisi-Zhang universality class for growing interfaces, displaying instead a novel superposition of equilibrium-like scaling and sustained oscillations.
The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior should be equivalent in infinite dimensions, up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in 2d using a new numerical protocol, termed `athermal quasi-static random displacement, and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolate between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter, and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.