Do you want to publish a course? Click here

Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states

166   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we use an extension of the quantization condition, given in Ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles.



rate research

Read More

The presence of long-range interactions violates a condition necessary to relate the energy of two particles in a finite volume to their S-matrix elements in the manner of Luscher. While in infinite volume, QED contributions to low-energy charged particle scattering must be resummed to all orders in perturbation theory (the Coulomb ladder diagrams), in a finite volume the momentum operator is gapped, allowing for a perturbative treatment. The leading QED corrections to the two-particle finite-volume energy quantization condition below the inelastic threshold, as well as approximate formulas for energy eigenvalues, are obtained. In particular, we focus on two spinless hadrons in the A1+ irreducible representation of the cubic group, and truncate the strong interactions to the s-wave. These results are necessary for the analysis of Lattice QCD+QED calculations of charged-hadron interactions, and can be straightforwardly generalized to other representations of the cubic group, to hadrons with spin, and to include higher partial waves.
165 - Akaki Rusetsky 2015
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{-3/2}|A|^2 exp(-2kappa L/sqrt{3})$, where $kappa$ is the bound-state momentum and $|A|^2$ denotes the three-body analog of the asymptotic normalization constant, which encodes the information about the short-range interactions in the three-body system.
221 - Shoichi Sasaki 2007
We discuss signatures of bound-state formation in finite volume via the Luscher finite size method. Assuming that the phase-shift formula in this method inherits all aspects of the quantum scattering theory, we may expect that the bound-state formation induces the sign of the scattering length to be changed. If it were true, this fact provides us a distinctive identification of a shallow bound state even in finite volume through determination of whether the second lowest energy state appears just above the threshold. We also consider the bound-state pole condition in finite volume, based on Luschers phase-shift formula and then find that the condition is fulfilled only in the infinite volume limit, but its modification by finite size corrections is exponentially suppressed by the spatial lattice size L. These theoretical considerations are also numerically checked through lattice simulations to calculate the positronium spectrum in compact scalar QED, where the short-range interaction between an electron and a positron is realized in the Higgs phase.
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when strength of short-range interactions are set equal for all pairs.
Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volume observables. As the formalism is complicated, it is important to provide non-trivial checks on the final results and also to explore limiting cases in which more straightforward predications may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge is volume-independent and equal to the total charge of the two-particle state. Second, we study the implications for a two-particle bound state. We demonstrate that the infinite-volume limit reproduces the expected matrix element and derive the leading finite-volume corrections to this result for a scalar current. Finally, we provide numerical estimates for the expected size of volume effects in future lattice QCD calculations of the deuterons scalar charge. We find that these effects completely dominate the infinite-volume result for realistic lattice volumes and that applying the present formalism, to analytically remove an infinite-series of leading volume corrections, is crucial to reliably extract the infinite-volume charge of the state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا