Do you want to publish a course? Click here

Finite-temperature dynamics of a Tonks-Girardeau gas in a frequency-modulated harmonic trap

136   0   0.0 ( 0 )
 Added by Karen Kheruntsyan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the out-of-equilibrium dynamics of a finite-temperature harmonically trapped Tonks-Girardeau gas induced by periodic modulation of the trap frequency. We give explicit exact solutions for the real-space density and momentum distributions of this interacting many-body system and characterize the stability diagram of the dynamics by mapping the many-body solution to the solution and stability diagram of Mathieus differential equation. The mapping allows one to deduce the exact structure of parametric resonances in the parameter space characterized by the driving amplitude and frequency of the modulation. Furthermore, we analyze the same problem within the finite-temperature hydrodynamic approach and show that the respective solutions to the hydrodynamic equations can be mapped to the same Mathieu equation. Accordingly, the stability diagram and the structure of resonances following from the hydrodynamic approach is exactly the same as those obtained from the exact many-body solution.



rate research

Read More

Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting bosons in one dimension in the Tonks-Girardeau regime of infinitely strong repulsive interactions. Using the Fredholm determinant approach and the Bose-Fermi mapping we show how the problem can be reduced to a single-particle basis, wherein the finite-temperature effects enter the solution via an effective dressing of the single-particle wavefunctions by the Fermi-Dirac occupation factors. We demonstrate the utility of our approach and its computational efficiency in two nontrivial out-of-equilibrium scenarios: collective breathing mode oscillations in a harmonic trap and collisional dynamics in the Newtons cradle setting involving real-time evolution in a periodic Bragg potential.
160 - M.D. Girardeau 2010
A harmonically trapped ultracold 1D spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a 3D Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super Tonks-Girardeau (STG) state which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG gas which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability---a collective many-body bounce effect. The effect, while being invisible in the evolution of the in-situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure of the gas during the isentropic compression, which acts as a potential barrier at the inner turning points of the breathing cycle.
The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dimensional Bose gas in the Tonks-Girardeau regime, valid for any type of confining potential, and apply it to bosons on a lattice to obtain the full spectral function, at all energy and momentum scales. We find that it displays three main singularity lines. The first two can be identified as the analogs of Lieb-I and Lieb-II modes of a uniform fluid; the third one, instead, is specifically due to the presence of the lattice. We show that the spectral function displays a power-law behaviour close to the Lieb-I and Lieb-II singularities, as predicted by the non-linear Luttinger liquid description, and obtain the exact exponents. In particular, the Lieb-II mode shows a divergence in the spectral function, differently from what happens in the dynamical structure factor, thus providing a route to probe it in experiments with ultracold atoms.
99 - Yajiang Hao , Yafei Song 2016
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping method we obtain the reduced one-body density matrix and therefore the momentum distribution for different statistical parameters and temperatures. At low temperature hard-core anyon gases exhibit the similar properties as those of ground state, which interpolate between Bose-like and Fermi-like continuously with the evolution of statistical properties. At high temperature hard-core anyon gases of different statistical properties display the same reduced one-body density matrix and momentum distribution as those of spin-polarized fermions. The Tans contact of hard-core anyon gas at finite temperature is also evaluated, which take the simple relation with that of Tonks-Girardeau gas $C_b$ as $C=frac12(1-coschipi)C_b$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا