Do you want to publish a course? Click here

Community Involvement in the WFIRST Exoplanet Microlensing Survey

78   0   0.0 ( 0 )
 Added by David Bennett
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

WFIRST is NASAs first flagship mission with pre-defined core science programs to study dark energy and perform a statistical census of wide orbit exoplanets with a gravitational microlensing survey. Together, these programs are expected to use more than half of the prime mission observing time. Previously, only smaller, PI-led missions have had core programs that used such a large fraction of the observing time, and in many cases, the data from these PI-led missions was reserved for the PIs science team for a proprietary period that allowed the PIs team to make most of the major discoveries from the data. Such a procedure is not appropriate for a flagship mission, which should provide science opportunities to the entire astronomy community. For this reason, there will be no proprietary period for WFIRST data, but we argue that a larger effort to make WFIRST science accessible to the astronomy community is needed. We propose a plan to enhance community involvement in the WFIRST exoplanet microlensing survey in two different ways. First, we propose a set of high level data products that will enable astronomers without detailed microlensing expertise access to the statistical implications of the WFIRST exoplanet microlensing survey data. And second, we propose the formation of a WFIRST Exoplanet Microlensing Community Science Team that will open up participation in the development of the WFIRST exoplanet microlensing survey to the general astronomy community in collaboration for the NASA selected science team, which will have the responsibility to provide most of the high level data products. This community science team will be open to volunteers, but members should also have the opportunity to apply for funding.



rate research

Read More

The Wide Field Infrared Survey Telescope (WFIRST) was the top ranked large space mission in the 2010 New Worlds, New Horizons decadal survey, and it was formed by merging the science programs of 3 different mission concepts, including the Microlensing Planet Finder (MPF) concept (Bennett etal 2010). The WFIRST science program (Spergel etal 2015) consists of a general observer program, a wavefront controlled technology program, and two targeted science programs: a program to study dark energy, and a statistical census of exoplanets with a microlensing survey, which uses nearly one quarter of WFIRSTs observing time in the current design reference mission. The New Worlds, New Horizons (decadal survey) midterm assessment summarizes the science case for the WFIRST exoplanet microlensing survey with this statement: WFIRSTs microlensing census of planets beyond 1 AU will perfectly complement Keplers census of compact systems, and WFIRST will also be able to detect free-floating planets unbound from their parent starsrlap.
The Wide Field Infrared Survey Telescope (WFIRST) will monitor $sim 2$ deg$^2$ toward the Galactic bulge in a wide ($sim 1-2~mu$m) W149 filter at 15-minute cadence with exposure times of $sim$50s for 6 seasons of 72 days each, for a total $sim$41,000 exposures taken over $sim$432 days, spread over the 5-year prime mission. This will be one of the deepest exposures of the sky ever taken, reaching a photon-noise photometric precision of 0.01 mag per exposure and collecting a total of $sim 10^9$ photons over the course of the survey for a W149$_{rm AB}sim 21$ star. Of order $4 times 10^7$ stars will be monitored with W149$_{rm AB}$<21, and 10$^8$ stars with W145$_{rm AB}$<23. The WFIRST microlensing survey will detect $sim$54,000 microlensing events, of which roughly 1% ($sim$500) will be due to isolated black holes, and $sim$3% ($sim$1600) will be due to isolated neutron stars. It will be sensitive to (effectively) isolated compact objects with masses as low as the mass of Pluto, thereby enabling a measurement of the compact object mass function over 10 orders of magnitude. Assuming photon-noise limited precision, it will detect $sim 10^5$ transiting planets with sizes as small as $sim 2~R_oplus$, perform asteroseismology of $sim 10^6$ giant stars, measure the proper motions to $sim 0.3%$ and parallaxes to $sim 10%$ for the $sim 6 times 10^6$ disk and bulge stars in the survey area, and directly detect $sim 5 times 10^3$ Trans-Neptunian objects (TNOs) with diameters down to $sim 10$ km, as well as detect $sim 10^3$ occulations of stars by TNOs during the survey. All of this science will completely serendipitous, i.e., it will not require modifications of the WFIRST optimal microlensing survey design. Allowing for some minor deviation from the optimal design, such as monitoring the Galactic center, would enable an even broader range of transformational science.
The Qatar Exoplanet Survey (QES) is discovering hot Jupiters and aims to discover hot Saturns and hot Neptunes that transit in front of relatively bright host stars. QES currently operates a robotic wide-angle camera system to identify promising transiting exoplanet candidates among which are the confirmed exoplanets Qatar 1b and 2b. This paper describes the first generation QES instrument, observing strategy, data reduction techniques, and follow-up procedures. The QES cameras in New Mexico complement the SuperWASP cameras in the Canary Islands and South Africa, and we have developed tools to enable the QES images and light curves to be archived and analysed using the same methods developed for the SuperWASP datasets. With its larger aperture, finer pixel scale, and comparable field of view, and with plans to deploy similar systems at two further sites, the QES, in collaboration with SuperWASP, should help to speed the discovery of smaller radius planets transiting bright stars in northern skies.
NASAs WFIRST mission will perform a wide-field, NIR survey of the Galactic Bulge to search for exoplanets via the microlensing techniques. As the mission is due to launch in the mid-2020s, around half-way through the LSST Main Survey, we have a unique opportunity to explore synergistic science from two landmark programs. LSST can survey the entire footprint of the WFIRST microlensing survey in a single Deep Drilling Field. Here we explore the great scientific potential of this proposal and recommend the most effective observing strategies.
In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescopes overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L (3.8 $mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($sim$0.1-1 Gyr) stars. LEECHs contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$mu$m in preparation for JWST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا