Do you want to publish a course? Click here

A Model of Random Industrial SAT

366   0   0.0 ( 0 )
 Added by John Saunders
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

One of the most studied models of SAT is random SAT. In this model, instances are composed from clauses chosen uniformly randomly and independently of each other. This model may be unsatisfactory in that it fails to describe various features of SAT instances, arising in real-world applications. Various modifications have been suggested to define models of industrial SAT. Here, we focus mainly on the aspect of community structure. Namely, here the set of variables consists of a number of disjoint communities, and clauses tend to consist of variables from the same community. Thus, we suggest a model of random industrial SAT, in which the central generalization with respect to random SAT is the additional community structure. There has been a lot of work on the satisfiability threshold of random $k$-SAT, starting with the calculation of the threshold of $2$-SAT, up to the recent result that the threshold exists for sufficiently large $k$. In this paper, we endeavor to study the satisfiability threshold for the proposed model of random industrial SAT. Our main result is that the threshold in this model tends to be smaller than its counterpart for random SAT. Moreover, under some conditions, this threshold even vanishes.



rate research

Read More

Approximating the partition function of the ferromagnetic Ising model with general external fields is known to be #BIS-hard in the worst case, even for bounded-degree graphs, and it is widely believed that no polynomial-time approximation scheme exists. This motivates an average-case question: are there classes of instances for which polynomial-time approximation schemes exist? We investigate this question for the random field Ising model on graphs with maximum degree $Delta$. We establish the existence of fully polynomial-time approximation schemes and samplers with high probability over the random fields if the external fields are IID Gaussians with variance larger than a constant depending only on the inverse temperature and $Delta$. The main challenge comes from the positive density of vertices at which the external field is small. These regions, which may have connected components of size $Theta(log n)$, are a barrier to algorithms based on establishing a zero-free region, and cause worst-case analyses of Glauber dynamics to fail. The analysis of our algorithm is based on percolation on a self-avoiding walk tree.
In this note, we design a discrete random walk on the real line which takes steps $0, pm 1$ (and one with steps in ${pm 1, 2}$) where at least $96%$ of the signs are $pm 1$ in expectation, and which has $mathcal{N}(0,1)$ as a stationary distribution. As an immediate corollary, we obtain an online version of Banaszczyks discrepancy result for partial colorings and $pm 1, 2$ signings. Additionally, we recover linear time algorithms for logarithmic bounds for the Koml{o}s conjecture in an oblivious online setting.
Corroborating a prediction from statistical physics, we prove that the Belief Propagation message passing algorithm approximates the partition function of the random $k$-SAT model well for all clause/variable densities and all inverse temperatures for which a modest absence of long-range correlations condition is satisfied. This condition is known as replica symmetry in physics language. From this result we deduce that a replica symmetry breaking phase transition occurs in the random $k$-SAT model at low temperature for clause/variable densities below but close to the satisfiability threshold.
141 - Mathias Soeken 2020
We present a constructive SAT-based algorithm to determine the multiplicative complexity of a Boolean function, i.e., the smallest number of AND gates in any logic network that consists of 2-input AND gates, 2-input XOR gates, and inverters. In order to speed-up solving time, we make use of several symmetry breaking constraints; these exploit properties of XAGs that may be useful beyond the proposed SAT-based algorithm. We further propose a heuristic post-optimization algorithm to reduce the number of XOR gates once the optimum number of AND gates has been obtained, which also makes use of SAT solvers. Our algorithm is capable to find all optimum XAGs for representatives of all 5-input affine-equivalent classes, and for a set of frequently occurring 6-input functions.
In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters treecut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical research community as they offer the algorithmic advantage over treewidth by supporting so-called fixed-parameter algorithms for certain problems that are not fixed-parameter tractable with respect to treewidth. However, the existing research has mostly been theoretical. A main obstacle for any practical or experimental use of these two width parameters is the lack of any practical or implemented algorithm for actually computing the associated decompositions. We address this obstacle by providing the first practical decomposition algorithms. Our approach for computing treecut width and treedepth decompositions is based on efficient encodings of these decomposition methods to the propositional satisfiability problem (SAT). Once an encoding is generated, any satisfiability solver can be used to find the decomposition. Moreover, we propose new characterisations for treecut width and treedepth that are based on sequences of partitions of the vertex set, a method that was pioneered for clique-width. We implemented and systematically tested our encodings on various benchmark instances, including famous named graphs and random graphs of various density. It turned out that for the considered width parameters, our partition-based SAT encoding even outperforms the best existing SAT encoding for treewidth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا