No Arabic abstract
Approximating the partition function of the ferromagnetic Ising model with general external fields is known to be #BIS-hard in the worst case, even for bounded-degree graphs, and it is widely believed that no polynomial-time approximation scheme exists. This motivates an average-case question: are there classes of instances for which polynomial-time approximation schemes exist? We investigate this question for the random field Ising model on graphs with maximum degree $Delta$. We establish the existence of fully polynomial-time approximation schemes and samplers with high probability over the random fields if the external fields are IID Gaussians with variance larger than a constant depending only on the inverse temperature and $Delta$. The main challenge comes from the positive density of vertices at which the external field is small. These regions, which may have connected components of size $Theta(log n)$, are a barrier to algorithms based on establishing a zero-free region, and cause worst-case analyses of Glauber dynamics to fail. The analysis of our algorithm is based on percolation on a self-avoiding walk tree.
One of the most studied models of SAT is random SAT. In this model, instances are composed from clauses chosen uniformly randomly and independently of each other. This model may be unsatisfactory in that it fails to describe various features of SAT instances, arising in real-world applications. Various modifications have been suggested to define models of industrial SAT. Here, we focus mainly on the aspect of community structure. Namely, here the set of variables consists of a number of disjoint communities, and clauses tend to consist of variables from the same community. Thus, we suggest a model of random industrial SAT, in which the central generalization with respect to random SAT is the additional community structure. There has been a lot of work on the satisfiability threshold of random $k$-SAT, starting with the calculation of the threshold of $2$-SAT, up to the recent result that the threshold exists for sufficiently large $k$. In this paper, we endeavor to study the satisfiability threshold for the proposed model of random industrial SAT. Our main result is that the threshold in this model tends to be smaller than its counterpart for random SAT. Moreover, under some conditions, this threshold even vanishes.
The restless bandit problem is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. In its ultimate generality, the restless bandit problem is known to be PSPACE-Hard to approximate to any non-trivial factor, and little progress has been made despite its importance in modeling activity allocation under uncertainty. We consider a special case that we call Feedback MAB, where the reward obtained by playing each of n independent arms varies according to an underlying on/off Markov process whose exact state is only revealed when the arm is played. The goal is to design a policy for playing the arms in order to maximize the infinite horizon time average expected reward. This problem is also an instance of a Partially Observable Markov Decision Process (POMDP), and is widely studied in wireless scheduling and unmanned aerial vehicle (UAV) routing. Unlike the stochastic MAB problem, the Feedback MAB problem does not admit to greedy index-based optimal policies. We develop a novel and general duality-based algorithmic technique that yields a surprisingly simple and intuitive 2+epsilon-approximate greedy policy to this problem. We then define a general sub-class of restless bandit problems that we term Monotone bandits, for which our policy is a 2-approximation. Our technique is robust enough to handle generalizations of these problems to incorporate various side-constraints such as blocking plays and switching costs. This technique is also of independent interest for other restless bandit problems. By presenting the first (and efficient) O(1) approximations for non-trivial instances of restless bandits as well as of POMDPs, our work initiates the study of approximation algorithms in both these contexts.
We give new approximation algorithms for the submodular joint replenishment problem and the inventory routing problem, using an iterative rounding approach. In both problems, we are given a set of $N$ items and a discrete time horizon of $T$ days in which given demands for the items must be satisfied. Ordering a set of items incurs a cost according to a set function, with properties depending on the problem under consideration. Demand for an item at time $t$ can be satisfied by an order on any day prior to $t$, but a holding cost is charged for storing the items during the intermediate period; the goal is to minimize the sum of the ordering and holding cost. Our approximation factor for both problems is $O(log log min(N,T))$; this improves exponentially on the previous best results.
In the relay placement problem the input is a set of sensors and a number $r ge 1$, the communication range of a relay. In the one-tier version of the problem the objective is to place a minimum number of relays so that between every pair of sensors there is a path through sensors and/or relays such that the consecutive vertices of the path are within distance $r$ if both vertices are relays and within distance 1 otherwise. The two-tier version adds the restrictions that the path must go through relays, and not through sensors. We present a 3.11-approximation algorithm for the one-tier version and a PTAS for the two-tier version. We also show that the one-tier version admits no PTAS, assuming P $ e$ NP.
We present an $(e^{O(p)} frac{log ell}{loglogell})$-approximation algorithm for socially fair clustering with the $ell_p$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $ell$ groups. The goal is to find a $k$-medians, $k$-means, or, more generally, $ell_p$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $sum_{u text{ in group }j} d(u,C)^p$. The socially fair clustering problem was independently proposed by Ghadiri, Samadi, and Vempala [2021] and Abbasi, Bhaskara, and Venkatasubramanian [2021]. Our algorithm improves and generalizes their $O(ell)$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $Omega(ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $Theta(frac{log ell}{loglogell})$ for a fixed $p$. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. [2021].