Do you want to publish a course? Click here

Hierarchical Multi-Label Dialog Act Recognition on Spanish Data

182   0   0.0 ( 0 )
 Added by Eug\\'enio Ribeiro
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Dialog acts reveal the intention behind the uttered words. Thus, their automatic recognition is important for a dialog system trying to understand its conversational partner. The study presented in this article approaches that task on the DIHANA corpus, whose three-level dialog act annotation scheme poses problems which have not been explored in recent studies. In addition to the hierarchical problem, the two lower levels pose multi-label classification problems. Furthermore, each level in the hierarchy refers to a different aspect concerning the intention of the speaker both in terms of the structure of the dialog and the task. Also, since its dialogs are in Spanish, it allows us to assess whether the state-of-the-art approaches on English data generalize to a different language. More specifically, we compare the performance of different segment representation approaches focusing on both sequences and patterns of words and assess the importance of the dialog history and the relations between the multiple levels of the hierarchy. Concerning the single-label classification problem posed by the top level, we show that the conclusions drawn on English data also hold on Spanish data. Furthermore, we show that the approaches can be adapted to multi-label scenarios. Finally, by hierarchically combining the best classifiers for each level, we achieve the best results reported for this corpus.



rate research

Read More

Dialog act recognition is an important step for dialog systems since it reveals the intention behind the uttered words. Most approaches on the task use word-level tokenization. In contrast, this paper explores the use of character-level tokenization. This is relevant since there is information at the sub-word level that is related to the function of the words and, thus, their intention. We also explore the use of different context windows around each token, which are able to capture important elements, such as affixes. Furthermore, we assess the importance of punctuation and capitalization. We performed experiments on both the Switchboard Dialog Act Corpus and the DIHANA Corpus. In both cases, the experiments not only show that character-level tokenization leads to better performance than the typical word-level approaches, but also that both approaches are able to capture complementary information. Thus, the best results are achieved by combining tokenization at both levels.
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs: dialog response generation and user simulation, where our model outperforms previous strong baselines.
Dialog act (DA) recognition is a task that has been widely explored over the years. Recently, most approaches to the task explored different DNN architectures to combine the representations of the words in a segment and generate a segment representation that provides cues for intention. In this study, we explore means to generate more informative segment representations, not only by exploring different network architectures, but also by considering different token representations, not only at the word level, but also at the character and functional levels. At the word level, in addition to the commonly used uncontextualized embeddings, we explore the use of contextualized representations, which provide information concerning word sense and segment structure. Character-level tokenization is important to capture intention-related morphological aspects that cannot be captured at the word level. Finally, the functional level provides an abstraction from words, which shifts the focus to the structure of the segment. We also explore approaches to enrich the segment representation with context information from the history of the dialog, both in terms of the classifications of the surrounding segments and the turn-taking history. This kind of information has already been proved important for the disambiguation of DAs in previous studies. Nevertheless, we are able to capture additional information by considering a summary of the dialog history and a wider turn-taking context. By combining the best approaches at each step, we achieve results that surpass the previous state-of-the-art on generic DA recognition on both SwDA and MRDA, two of the most widely explored corpora for the task. Furthermore, by considering both past and future context, simulating annotation scenario, our approach achieves a performance similar to that of a human annotator on SwDA and surpasses it on MRDA.
In this paper, we focus on data augmentation for the extreme multi-label classification (XMC) problem. One of the most challenging issues of XMC is the long tail label distribution where even strong models suffer from insufficient supervision. To mitigate such label bias, we propose a simple and effective augmentation framework and a new state-of-the-art classifier. Our augmentation framework takes advantage of the pre-trained GPT-2 model to generate label-invariant perturbations of the input texts to augment the existing training data. As a result, it present substantial improvements over baseline models. Our contributions are two-factored: (1) we introduce a new state-of-the-art classifier that uses label attention with RoBERTa and combine it with our augmentation framework for further improvement; (2) we present a broad study on how effective are different augmentation methods in the XMC task.
We address the problem of speech act recognition (SAR) in asynchronous conversations (forums, emails). Unlike synchronous conversations (e.g., meetings, phone), asynchronous domains lack large labeled datasets to train an effective SAR model. In this paper, we propose methods to effectively leverage abundant unlabeled conversational data and the available labeled data from synchronous domains. We carry out our research in three main steps. First, we introduce a neural architecture based on hierarchical LSTMs and conditional random fields (CRF) for SAR, and show that our method outperforms existing methods when trained on in-domain data only. Second, we improve our initial SAR models by semi-supervised learning in the form of pretrained word embeddings learned from a large unlabeled conversational corpus. Finally, we employ adversarial training to improve the results further by leveraging the labeled data from synchronous domains and by explicitly modeling the distributional shift in two domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا