Do you want to publish a course? Click here

Min-max theory for free boundary minimal hypersurfaces II -- General Morse index bounds and applications

86   0   0.0 ( 0 )
 Added by Zhichao Wang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

For any smooth Riemannian metric on an $(n+1)$-dimensional compact manifold with boundary $(M,partial M)$ where $3leq (n+1)leq 7$, we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min-max theory in the Almgren-Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $C^infty$ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in $M$. If $partial M$ is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting.



rate research

Read More

86 - Alessandro Pigati 2020
We adapt the viscosity method introduced by Rivi`ere to the free boundary case. Namely, given a compact oriented surface $Sigma$, possibly with boundary, a closed ambient Riemannian manifold $(mathcal{M}^m,g)$ and a closed embedded submanifold $mathcal{N}^nsubsetmathcal{M}$, we study the asymptotic behavior of (almost) critical maps $Phi$ for the functional begin{align*} &E_sigma(Phi):=operatorname{area}(Phi)+sigmaoperatorname{length}(Phi|_{partialSigma})+sigma^4int_Sigma|{mathrm {I!I}}^Phi|^4,operatorname{vol}_Phi end{align*} on immersions $Phi:Sigmatomathcal{M}$ with the constraint $Phi(partialSigma)subseteqmathcal{N}$, as $sigmato 0$, assuming an upper bound for the area and a suitable entropy condition. As a consequence, given any collection $mathcal{F}$ of compact subsets of the space of smooth immersions $(Sigma,partialSigma)to(mathcal{M},mathcal{N})$, assuming $mathcal{F}$ to be stable under isotopies of this space we show that the min-max value begin{align*} &beta:=inf_{Ainmathcal{F}}max_{Phiin A}operatorname{area}(Phi) end{align*} is the sum of the areas of finitely many branched minimal immersions $Phi_{(i)}:Sigma_{(i)}tomathcal{M}$ with $partial_ uPhi_{(i)}perp Tmathcal{N}$ along $partialSigma_{(i)}$, whose (connected) domains $Sigma_{(i)}$ can be different from $Sigma$ but cannot have a more complicated topology. We adopt a point of view which exploits extensively the diffeomorphism invariance of $E_sigma$ and, along the way, we simplify several arguments from the original work. Some parts generalize to closed higher-dimensional domains, for which we get a rectifiable stationary varifold in the limit.
In the early 1980s, S. T. Yau conjectured that any compact Riemannian three-manifold admits an infinite number of closed immersed minimal surfaces. We use min-max theory for the area functional to prove this conjecture in the positive Ricci curvature setting. More precisely, we show that every compact Riemannian manifold with positive Ricci curvature and dimension at most seven contains infinitely many smooth, closed, embedded minimal hypersurfaces. In the last section we mention some open problems related with the geometry of these minimal hypersurfaces.
We find many examples of compact Riemannian manifolds $(M,g)$ whose closed minimal hypersurfaces satisfy a lower bound on their index that is linear in their first Betti number. Moreover, we show that these bounds remain valid when the metric $g$ is replaced with $g$ in a neighbourhood of $g$. Our examples $(M,g)$ consist of certain minimal isoparametric hypersurfaces of spheres; their focal manifolds; the Lie groups $SU(n)$ for $nleq 17$, and $Sp(n)$ for all $n$; and all quaternionic Grassmannians.
In this paper we establish a connection between free boundary minimal surfaces in a ball in $mathbb{R}^3$ and free boundary cones arising in a one-phase problem. We prove that a doubly connected minimal surface with free boundary in a ball is a catenoid.
Given any admissible $k$-dimensional family of immersions of a given closed oriented surface into an arbitrary closed Riemannian manifold, we prove that the corresponding min-max width for the area is achieved by a smooth (possibly branched) immersed minimal surface with multiplicity one and Morse index bounded by $k$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا