Do you want to publish a course? Click here

Topological Constraints in the Reconnection of Vortex Braids

55   0   0.0 ( 0 )
 Added by Simon Candelaresi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the relaxation of a topologically non-trivial vortex braid with zero net helicity in a barotropic fluid. The aim is to investigate the extent to which the topology of the vorticity field -- characterized by braided vorticity field lines -- determines the dynamics, particularly the asymptotic behaviour under vortex reconnection in an evolution at high Reynolds numbers 25,000. Analogous to the evolution of braided magnetic fields in plasma, we find that the relaxation of our vortex braid leads to a simplification of the topology into large-scale regions of opposite swirl, consistent with an inverse cascade of the helicity. The change of topology is facilitated by a cascade of vortex reconnection events. During this process the existence of regions of positive and negative kinetic helicity imposes a lower bound for the kinetic energy. For the enstrophy we derive analytically a lower bound given by the presence of unsigned kinetic helicity, which we confirm in our numerical experiments.



rate research

Read More

At high Reynolds number, the interaction between two vortex tubes leads to intense velocity gradients, which are at the heart of fluid turbulence. This vorticity amplification comes about through two different instability mechanisms of the initial vortex tubes, assumed anti-parallel and with a mirror plane of symmetry. At moderate Reynolds number, the tubes destabilize via a Crow instability, with the nonlinear development leading to strong flattening of the cores into thin sheets. These sheets then break down into filaments which can repeat the process. At higher Reynolds number, the instability proceeds via the elliptical instability, producing vortex tubes that are perpendicular to the original tube directions. In this work, we demonstrate that these same transition between Crow and Elliptical instability occurs at moderate Reynolds number when we vary the initial angle $beta$ between two straight vortex tubes. We demonstrate that when the angle between the two tubes is close to $pi/2$, the interaction between tubes leads to the formation of thin vortex sheets. The subsequent breakdown of these sheets involves a twisting of the paired sheets, followed by the appearance of a localized cloud of small scale vortex structures. At smaller values of the angle $beta$ between the two tubes, the breakdown mechanism changes to an elliptic cascade-like mechanism. Whereas the interaction of two vortices depends on the initial condition, the rapid formation of fine-scales vortex structures appears to be a robust feature, possibly universal at very high Reynolds numbers.
In a concurrent work, Villois et al. 2020 reported the evidence that vortex reconnections in quantum fluids follow an irreversible dynamics, namely vortices separate faster than they approach; such time-asymmetry is explained by using simple conservation arguments. In this work we develop further these theoretical considerations and provide a detailed study of the vortex reconnection process for all the possible geometrical configurations of the order parameter (superfluid) wave function. By matching the theoretical description of incompressible vortex filaments and the linear theory describing locally vortex reconnections, we determine quantitatively the linear momentum and energy exchanges between the incompressible (vortices) and the compressible (density waves) degrees of freedom of the superfluid. We show theoretically and corroborate numerically, why a unidirectional density pulse must be generated after the reconnection process and why only certain reconnecting angles, related to the rates of approach and separations, are allowed. Finally, some aspects concerning the conservation of centre-line helicity during the reconnection process are discussed.
The growth rate of material interfaces is an important proxy for mixing and reaction rates in fluid dynamics, and can also be used to identify regions of coherence. Estimating such growth rates can be difficult, since they depend on detailed properties of the velocity field, such as its derivatives, that are hard to measure directly. When an experiment gives only sparse trajectory data, it is natural to encode planar trajectories as mathematical braids, which are topological objects that contain information on the mixing characteristics of the flow, in particular through their action on topological loops. We test such braid methods on an experimental system, the rotor-oscillator flow, which is well-described by a theoretical model. We conduct a series of laboratory experiments to collect particle tracking and particle image velocimetry data, and use the particle tracks to identify regions of coherence within the flow that match the results obtained from the model velocity field. We then use the data to estimate growth rates of material interface, using both the braid approach and numerical simulations. The interface growth rates follow similar qualitative trends in both the experiment and model, but have significant quantitative differences, suggesting that the two are not as similar as first seems. Our results shows that there are challenges in using the braid approach to analyze data, in particular the need for long trajectories, but that these are not insurmountable.
We present results for the equilibrium statistics and dynamic evolution of moderately large ($n = {mathcal{O}}(10^2 - 10^3)$) numbers of interacting point vortices on the unit sphere under the constraint of zero mean angular momentum. We consider a binary gas consisting of equal numbers of vortices with positive and negative circulations. When the circulations are chosen to be proportional to $1/sqrt{n}$, the energy probability distribution function, $p(E)$, converges rapidly with $n$ to a function that has a single maximum, corresponding to a maximum in entropy. Ensemble-averaged wavenumber spectra of the nonsingular velocity field induced by the vortices exhibit the expected $k^{-1}$ behavior at small scales for all energies. The spectra at the largest scales vary continuously with the inverse temperature $beta$ of the system and show a transition from positively sloped to negatively sloped as $beta$ becomes negative. The dynamics are ergodic and, regardless of the initial configuration of the vortices, statistical measures simply relax towards microcanonical ensemble measures at all observed energies. As such, the direction of any cascade process measured by the evolution of the kinetic energy spectrum depends only on the relative differences between the initial spectrum and the ensemble mean spectrum at that energy; not on the energy, or temperature, of the system.
240 - E. Lee 2008
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal non-dissipative case is studied up to the equivalent of 2048^3 grid points for one of these flows. The temporal evolution of the logarithmic decrements, delta, of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا