Do you want to publish a course? Click here

Fast rates for empirical risk minimization over c`adl`ag functions with bounded sectional variation norm

290   0   0.0 ( 0 )
 Added by Aur\\'elien Bibaut
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Empirical risk minimization over classes functions that are bounded for some version of the variation norm has a long history, starting with Total Variation Denoising (Rudin et al., 1992), and has been considered by several recent articles, in particular Fang et al., 2019 and van der Laan, 2015. In this article, we consider empirical risk minimization over the class $mathcal{F}_d$ of c`adl`ag functions over $[0,1]^d$ with bounded sectional variation norm (also called Hardy-Krause variation). We show how a certain representation of functions in $mathcal{F}_d$ allows to bound the bracketing entropy of sieves of $mathcal{F}_d$, and therefore derive rates of convergence in nonparametric function estimation. Specifically, for sieves whose growth is controlled by some rate $a_n$, we show that the empirical risk minimizer has rate of convergence $O_P(n^{-1/3} (log n)^{2(d-1)/3} a_n)$. Remarkably, the dimension only affects the rate in $n$ through the logarithmic factor, making this method especially appropriate for high dimensional problems. In particular, we show that in the case of nonparametric regression over sieves of c`adl`ag functions with bounded sectional variation norm, this upper bound on the rate of convergence holds for least-squares estimators, under the random design, sub-exponential errors setting.



rate research

Read More

The processes of the averaged regression quantiles and of their modifications provide useful tools in the regression models when the covariates are not fully under our control. As an application we mention the probabilistic risk assessment in the situation when the return depends on some exogenous variables. The processes enable to evaluate the expected $alpha$-shortfall ($0leqalphaleq 1$) and other measures of the risk, recently generally accepted in the financial literature, but also help to measure the risk in environment analysis and elsewhere.
We investigate rough differential equations with a time-dependent reflecting lower barrier, where both the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow for Young integration, we provide existence, uniqueness and stability results. When the driving signal is a c`adl`ag $p$-rough path for $p in [2,3)$, we establish existence to general reflected rough differential equations, as well as uniqueness in the one-dimensional case.
We provide an empirical process theory for locally stationary processes over nonsmooth function classes. An important novelty over other approaches is the use of the flexible functional dependence measure to quantify dependence. A functional central limit theorem and nonasymptotic maximal inequalities are provided. The theory is used to prove the functional convergence of the empirical distribution function (EDF) and to derive uniform convergence rates for kernel density estimators both for stationary and locally stationary processes. A comparison with earlier results based on other measures of dependence is carried out.
Using rough path theory, we provide a pathwise foundation for stochastic It^o integration, which covers most commonly applied trading strategies and mathematical models of financial markets, including those under Knightian uncertainty. To this end, we introduce the so-called Property (RIE) for c`adl`ag paths, which is shown to imply the existence of a c`adl`ag rough path and of quadratic variation in the sense of Follmer. We prove that the corresponding rough integrals exist as limits of left-point Riemann sums along a suitable sequence of partitions. This allows one to treat integrands of non-gradient type, and gives access to the powerful stability estimates of rough path theory. Additionally, we verify that (path-dependent) functionally generated trading strategies and Covers universal portfolio are admissible integrands, and that Property (RIE) is satisfied by both (Young) semimartingales and typical price paths.
This paper has two main goals: (a) establish several statistical properties---consistency, asymptotic distributions, and convergence rates---of stationary solutions and values of a class of coupled nonconvex and nonsmoothempirical risk minimization problems, and (b) validate these properties by a noisy amplitude-based phase retrieval problem, the latter being of much topical interest.Derived from available data via sampling, these empirical risk minimization problems are the computational workhorse of a population risk model which involves the minimization of an expected value of a random functional. When these minimization problems are nonconvex, the computation of their globally optimal solutions is elusive. Together with the fact that the expectation operator cannot be evaluated for general probability distributions, it becomes necessary to justify whether the stationary solutions of the empirical problems are practical approximations of the stationary solution of the population problem. When these two features, general distribution and nonconvexity, are coupled with nondifferentiability that often renders the problems non-Clarke regular, the task of the justification becomes challenging. Our work aims to address such a challenge within an algorithm-free setting. The resulting analysis is therefore different from the much of the analysis in the recent literature that is based on local search algorithms. Furthermore, supplementing the classical minimizer-centric analysis, our results offer a first step to close the gap between computational optimization and asymptotic analysis of coupled nonconvex nonsmooth statistical estimation problems, expanding the former with statistical properties of the practically obtained solution and providing the latter with a more practical focus pertaining to computational tractability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا