Do you want to publish a course? Click here

A model-free backward and forward nonlinear PDEs for implied volatility

102   0   0.0 ( 0 )
 Added by Andrey Itkin
 Publication date 2019
  fields Financial
and research's language is English




Ask ChatGPT about the research

We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibly random time is convex. We also discuss suitable initial and boundary conditions for those PDEs. Finally, we demonstrate how to solve them numerically by using an iterative finite-difference approach.



rate research

Read More

In this paper we modify the model of Itkin, Shcherbakov and Veygman, (2019) (ISV2019), proposed for pricing Quanto Credit Default Swaps (CDS) and risky bonds, in several ways. First, it is known since the Lehman Brothers bankruptcy that the recovery rate could significantly vary right before or at default, therefore, in this paper we consider it to be stochastic. Second, to reduce complexity of the model, we treat the domestic interest rate as deterministic, because, as shown in ISV2019, volatility of the domestic interest rate does not contribute much to the value of the Quanto CDS spread. Finally, to solve the corresponding systems of 4D partial differential equations we use a different flavor of the Radial Basis Function (RBF) method which is a combination of localized RBF and finite-difference methods, and is known in the literature as RBF-FD. Results of our numerical experiments presented in the paper demonstrate that the influence of volatility of the recovery rate is significant if the correlation between the recovery rate and the log-intensity of the default is non-zero. Also, the impact of the recovery mean-reversion rate on the Quanto CDS spread could be comparable with the impact due to jump-at-default in the FX rate.
In this paper we derive semi-closed form prices of barrier (perhaps, time-dependent) options for the Hull-White model, ie., where the underlying follows a time-dependent OU process with a mean-reverting drift. Our approach is similar to that in (Carr and Itkin, 2020) where the method of generalized integral transform is applied to pricing barrier options in the time-dependent OU model, but extends it to an infinite domain (which is an unsolved problem yet). Alternatively, we use the method of heat potentials for solving the same problems. By semi-closed solution we mean that first, we need to solve numerically a linear Volterra equation of the first kind, and then the option price is represented as a one-dimensional integral. Our analysis shows that computationally our method is more efficient than the backward and even forward finite difference methods (if one uses them to solve those problems), while providing better accuracy and stability.
We present a multigrid iterative algorithm for solving a system of coupled free boundary problems for pricing American put options with regime-switching. The algorithm is based on our recently developed compact finite difference scheme coupled with Hermite interpolation for solving the coupled partial differential equations consisting of the asset option and the delta, gamma, and speed sensitivities. In the algorithm, we first use the Gauss-Seidel method as a smoother and then implement a multigrid strategy based on modified cycle (M-cycle) for solving our discretized equations. Hermite interpolation with Newton interpolatory divided difference (as the basis) is used in estimating the coupled asset, delta, gamma, and speed options in the set of equations. A numerical experiment is performed with the two- and four- regime examples and compared with other existing methods to validate the optimal strategy. Results show that this algorithm provides a fast and efficient tool for pricing American put options with regime-switching.
We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and Itkin, 2020, Itkin and Muravey, 2020). This paper extends this methodology to the CIR model for zero-coupon bonds, and to the CEV model for stocks which are used as the corresponding underlying for the barrier options. We describe two approaches. One is generalization of the method of heat potentials for the heat equation to the Bessel process, so we call it the method of Bessel potentials. We also propose a general scheme how to construct the potential method for any linear differential operator with time-independent coefficients. The second one is the method of generalized integral transform, which is also extended to the Bessel process. In all cases, a semi-closed solution means that first, we need to solve numerically a linear Volterra equation of the second kind, and then the option price is represented as a one-dimensional integral. We demonstrate that computationally our method is more efficient than both the backward and forward finite difference methods while providing better accuracy and stability. Also, it is shown that both method dont duplicate but rather compliment each other, as one provides very accurate results at small maturities, and the other one - at high maturities.
We continue a series of papers devoted to construction of semi-analytic solutions for barrier options. These options are written on underlying following some simple one-factor diffusion model, but all the parameters of the model as well as the barriers are time-dependent. We managed to show that these solutions are systematically more efficient for pricing and calibration than, eg., the corresponding finite-difference solvers. In this paper we extend this technique to pricing double barrier options and present two approaches to solving it: the General Integral transform method and the Heat Potential method. Our results confirm that for double barrier options these semi-analytic techniques are also more efficient than the traditional numerical methods used to solve this type of problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا