Do you want to publish a course? Click here

Performance Assessment of Kron Reduction in the Numerical Analysis of Polyphase Power Systems

96   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper investigates the impact of Kron reduction on the performance of numerical methods applied to the analysis of unbalanced polyphase power systems. Specifically, this paper focuses on power-flow study, state estimation, and voltage stability assessment. For these applications, the standard Newton-Raphson method, linear weighted-least-squares regression, and homotopy continuation method are used, respectively. The performance of the said numerical methods is assessed in a series of simulations, in which the zero-injection nodes of a test system are successively eliminated through Kron reduction.



rate research

Read More

Given the increasing penetration in renewable generation, the UK power system is experiencing a decline in system inertia and an increase in frequency response (FR) requirements. Faster FR products are a mitigating solution that can cost-effectively meet the system balancing requirements. Thus, this paper proposes a mixed integer linear programming (MILP) unit commitment model which can simultaneously schedule inertial response, mandatory FR, as well as a sub-second FR product - enhanced frequency response (EFR). The model quantifies the value of providing faster reacting FR products in comparison with other response times from typical FR products. The performance and value of EFR are determined in a series of future energy scenarios with respect to the UK market and system conditions.
This paper discusses linearized models of hydropower plants (HPPs). First, it reviews state-of-the-art models and discusses their non-linearities, then it proposes suitable linearization strategies for the plant head, discharge, and turbine torque. It is shown that neglecting the dependency of the hydroacoustic resistance on the discharge leads to a linear formulation of the hydraulic circuits model. For the turbine, a numerical linearization based on a first-order Taylor expansion is proposed. Model performance is evaluated for a medium- and a low-head HPP with a Francis and Kaplan turbine, respectively. Perspective applications of these linear models are in the context of efficient model predictive control of HPPs based on convex optimization.
This paper investigates how a disturbance in the power network affects the nodal frequencies of certain network buses. To begin with, we show that the inertia of a single generator is in inverse proportion to the initial rate of change of frequency (RoCoF) under disturbances. Then, we present how the initial RoCoF of the nodal frequencies are related to the inertia constants of multiple generators in a power network, which leads to a performance metric to analyze nodal frequency performance. To be specific, the proposed metric evaluates the impact of disturbances on the nodal frequency performance. The validity and effectiveness of the proposed metric are illustrated via simulations on a multi-machine power system.
This paper aims to propose a novel large-signal order reduction (LSOR) approach for microgrids (MG) by embedding a stability and accuracy assessment theorem. Different from the existing order reduction methods, the proposed approach prevails mainly in two aspects. Firstly, the dynamic stability of full-order MG models can be assessed by only leveraging their derived reduced-order models and boundary layer models with our method. Specially, when the reduced-order system is input-to-state stable and the boundary layer system is uniformly globally asymptotically stable, the original MGs system can be proved to be stable under several common growth conditions. Secondly, a set of accuracy assessment criterion is developed and embedded into a tailored feedback mechanism to guarantee the accuracy of derived reduced model. It is proved that the errors between solutions of reduced and original models are bounded and convergent under such conditions. Strict mathematical proof for the proposed stability and accuracy assessment theorem is provided. The proposed LSOR method is generic and can be applied to arbitrary dynamic systems. Multiple case studies are conducted on MG systems to show the effectiveness of proposed approach.
Power distribution systems are experiencing a large-scale integration of Converter-Interfaced Distributed Energy Resources (CIDERs). This complicates the analysis and mitigation of harmonics, whose creation and propagation are facilitated by the interactions of converters and their controllers through the grid. In this paper, a method for the calculation of the so-called Harmonic Power-Flow (HPF) in three-phase grids with CIDERs is proposed. The distinguishing feature of this HPF method is the generic and modular representation of the system components. Notably, as opposed to most of the existing approaches, the coupling between harmonics is explicitly considered. The HPF problem is formulated by combining the hybrid nodal equations of the grid with the closed-loop transfer functions of the CIDERs, and solved using the Newton-Raphson method. The grid components are characterized by compound electrical parameters, which allow to represent both transposed or non-transposed lines. The CIDERs are represented by modular linear time-periodic systems, which allows to treat both grid-forming and grid-following control laws. The methods accuracy and computational efficiency are confirmed via time-domain simulations of the CIGRE low-voltage benchmark microgrid. This paper is divided in two parts, which focus on the development (Part I) and the validation (Part II) of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا