Do you want to publish a course? Click here

Chaotic Inflation from the MSSM Along Flat $D$-Term Trajectory

75   0   0.0 ( 0 )
 Added by Zurab Tavartkiladze
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the MSSM we propose the chaotic inflationary scenario in which the inflaton field is a combination of sleptons and the Higgs field states evolving along the $D$-term flat direction. In the inflation and postinflation reheating processes, a decisive role is played by the MSSM Yukawa superpotential. The vacuum energy during the inflationary era is mainly from the muonic Yukawa coupling, while the inflaton decay and subsequent reheating process dominantly proceeds due to the strange quark Yukawa term. Because of these, the presented scenario is predictive and the results obtained agree well with cosmological observations. In particular, the scalar spectral index and the tensor-to-scalar ratio are respectively, $n_ssimeq 0.966$ and $r=0.00117$. The reheating temperature is found to be $T_rsimeq 7.2times 10^7$ GeV.



rate research

Read More

The most naive interpretation of the BICEP2 data is the chaotic inflation by an inflaton with a quadratic potential. When combined with supersymmetry, we argue that the inflaton plays the role of right-handed scalar neutrino based on rather general considerations. The framework suggests that the right-handed sneutrino tunneled from a false vacuum in a landscape to our vacuum with a small negative curvature and suppressed scalar perturbations at large scales.
We consider a possibility that one of the flat directions in the minimal supersymmetric standard model plays the role of the inflaton field and realizes large-field inflation. This is achieved by introducing a generalized shift symmetry on the flat direction, which enables us to control the inflaton potential over large field values. After inflation, higher order terms allowed by the generalized shift symmetry automatically cause a helical motion of the field to create the baryon number of the universe, while baryonic isocurvature fluctuations are suppressed.
Inflationary scenarios motivated by the Minimal Supersymmetric Standard Model (MSSM) where five scalar fields are non-minimally coupled to gravity are considered. The potential of the model and the function of non-minimal coupling are polynomials of two Higgs doublet convolutions. We show that the use of the strong coupling approximation allows to obtain inflationary parameters in the case when a combination of the four scalar fields plays a role of inflaton. Numerical calculations show that the cosmological evolution leads to inflationary scenarios fully compatible with observational data for different values of the MSSM mixing angle $beta$.
We propose an extension of natural inflation, where the inflaton potential is a general periodic function. Specifically, we study elliptic inflation where the inflaton potential is given by Jacobi elliptic functions, Jacobi theta functions or the Dedekind eta function, which appear in gauge and Yukawa couplings in the string theories compactified on toroidal backgrounds. We show that in the first two cases the predicted values of the spectral index and the tensor-to-scalar ratio interpolate from natural inflation to exponential inflation such as $R^2$- and Higgs inflation and brane inflation, where the spectral index asymptotes to $n_s = 1-2/N simeq 0.967$ for the e-folding number $N = 60$. We also show that a model with the Dedekind eta function gives a sizable running of the spectral index due to modulations in the inflaton potential. Such elliptic inflation can be thought of as a specific realization of multi-natural inflation, where the inflaton potential consists of multiple sinusoidal functions. We also discuss examples in string theory where Jacobi theta functions and the Dedekind eta function appear in the inflaton potential.
229 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا