No Arabic abstract
We consider a possibility that one of the flat directions in the minimal supersymmetric standard model plays the role of the inflaton field and realizes large-field inflation. This is achieved by introducing a generalized shift symmetry on the flat direction, which enables us to control the inflaton potential over large field values. After inflation, higher order terms allowed by the generalized shift symmetry automatically cause a helical motion of the field to create the baryon number of the universe, while baryonic isocurvature fluctuations are suppressed.
Within the MSSM we propose the chaotic inflationary scenario in which the inflaton field is a combination of sleptons and the Higgs field states evolving along the $D$-term flat direction. In the inflation and postinflation reheating processes, a decisive role is played by the MSSM Yukawa superpotential. The vacuum energy during the inflationary era is mainly from the muonic Yukawa coupling, while the inflaton decay and subsequent reheating process dominantly proceeds due to the strange quark Yukawa term. Because of these, the presented scenario is predictive and the results obtained agree well with cosmological observations. In particular, the scalar spectral index and the tensor-to-scalar ratio are respectively, $n_ssimeq 0.966$ and $r=0.00117$. The reheating temperature is found to be $T_rsimeq 7.2times 10^7$ GeV.
The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.
One interpretation of proton stability is the existence of extra-flat directions of the MSSM, in particular $u^{c}u^{c}d^{c}e^{c}$ and $QQQL$, where the operators lifting the potential are suppressed by a mass scale $Lambda$ which is much larger than the Planck mass, $ Lambda gae 10^{26} GeV$. Using D-term hybrid inflation as an example, we show that such flat directions can serve as the inflaton in SUSY inflation models. The resulting model is a minimal version of D-term inflation which requires the smallest number of additional fields. In the case where $Q$-balls form from the extra-flat direction condensate after inflation, successful Affleck-Dine baryogenesis is possible if the suppression mass scale is $gae 10^{31}-10^{35} GeV$. In this case the reheating temperature from $Q$-ball decay is in the range $3-100 GeV$, while observable baryon isocurvature perturbations and non-thermal dark matter are possible. In the case of extra-flat directions with a large $t$ squark component, there no $Q$-ball formation and reheating is via conventional condensate decay. In this case the reheating temperature is in the range $1-100 TeV$, naturally evading thermal gravitino overproduction while allowing sphaleron erasure of any large B-L asymmetry.
We investigate the scenario that one flat direction creates baryon asymmetry of the unverse, while Q balls from another direction can be the dark matter in the gauge-mediated supersymmetry breaking for high-scale inflation. Isocurvature fluctuations are suppressed by the fact that the Affleck-Dine field stays at around the Planck scale during inflation. We find that the dark matter Q balls can be detected in IceCube-like experiments in the future.
We show how successful supersymmetric hybrid inflation is realized in realistic models where the resolution of the minimal supersymmetric standard model mu problem is intimately linked with axion physics. The scalar fields that accompany the axion, such as the saxion, are closely monitored during and after inflation to ensure that the axion isocurvature perturbations lie below the observational limits. The scalar spectral index n_s is about 0.96 - 0.97, while the tensor-to-scalar ratio r, a canonical measure of gravity waves, lies well below the observable range in our example. The axion domain walls are inflated away, and depending on the axion decay constant f_a and the magnitude of the mu parameter, the axions and/or the lightest supersymmetric particle compose the dark matter in the universe. Non-thermal leptogenesis is naturally implemented in this class of models.