Do you want to publish a course? Click here

Matter-coupled supersymmetric Kerr-Newman-AdS$_4$ black holes

110   0   0.0 ( 0 )
 Added by Kiril Hristov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new analytic rotating AdS$_4$ black holes, found as solutions of 4d gauged $mathcal{N}=2$ supergravity coupled to abelian vector multiplets with a symmetric scalar manifold. These configurations preserve two real supercharges and have a smooth limit to the BPS Kerr-Newman-AdS$_4$ black hole. We spell out the solution of the $STU$ model admitting an uplift to M-theory on S$^7$. We identify an entropy function, which upon extremization gives the black hole entropy, to be holographically reproduced by the leading $N$ contribution of the generalized superconformal index of the dual theory.



rate research

Read More

We study $mathcal{N}=2$ supergravity with higher-derivative corrections that preserve the $mathcal{N}=2$ supersymmetry and show that Kerr-Newman black holes are solutions to these theories. Modifications of the black hole entropy due to the higher derivatives are universal and apply even in the BPS and Schwarzschild limits. Our solutions and their entropy are greatly simplified by supersymmetry of the theory even though the black holes generally do not preserve any of the supersymmetry.
The spontaneous pair production of charged scalars in a near extremal Kerr-Newman (KN) black hole is analytically studied. It is shown that the existence condition for the pair production is equivalent to the violation of the Breitenlohner-Freedman bound in an AdS$_2$ space. The mean number of produced pairs in the extremal black hole has a thermal interpretation, in which the effective temperature for the Schwinger effect in the AdS$_2$ space persistently holds, while the mean number in the near extremal black hole has an additional factor of the Schwinger effect in the Rindler space. In addition, the holographic dual conformal field theory (CFT) descriptions of the charged scalar pair production are respectively realized both in the $J$ and $Q$ pictures in terms of the KN/CFTs correspondence.
We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS$_3$ structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the $J$-, $Q$- and $P$-pictures respectively based on the threefold dyonic KN/CFTs dualities.
We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two mixed ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.
We study N =4 super Yang-Mills theories on a three sphere with two kinds of chemical potentials. One is associated with the R-symmetry and the other with the rotational symmetry of S^3 (SO(4) symmetry). These correspond to the charged Kerr-AdS black holes via AdS/CFT. The exact partition functions at zero coupling are computed and the thermodynamical properties are studied. We find a nontrivial gap between the confinement/deconfinement transition line and the boundary of the phase diagram when we include more than four chemical potentials. In the dual gravity, we find such a gap in the phase diagram to study the thermodynamics of the charged Kerr-AdS black hole. This shows that the qualitative phase structures agree between the both sides. We also find that the ratio of the thermodynamical quantities is almost well-known factor 3/4 even at the low temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا