No Arabic abstract
We present high-resolution and high-quality UVES spectroscopic data of the metal-poor double-lined spectroscopic binary CS 22876--032 ([Fe/H] $sim -3.7$ dex), with the goal to derive the $^6$Li/$^7$Li isotopic ratio by analysing the ion{Li}{i} $lambda$~670.8~nm doublet. We coadd all 28 useful spectra normalised and corrected for radial velocity to the rest frame of the primary star. We fit the Li profile with a grid of the 3D-NLTE synthetic spectra, to take into account the line profile asymmetries induced by stellar convection, and perform Monte Carlo simulations to evaluate the uncertainty of the fit of the Li line profile. We check that the veiling factor does not affect the derived isotopic ratio, $^6$Li/$^7$Li, and only modifies the Li abundance, A(Li), by about 0.15~dex. The best fit of the Li profile of the primary star provides A(Li)~$ = 2.17 pm 0.01$~dex and $^6$Li/$^7$Li~$=8^{+2}_{-5}$% at 68% confidence level. In addition, we improve the Li abundance of the secondary star at A(Li)~$= 1.55 pm 0.04$~dex, which is about 0.6~dex lower than that of the primary star. The analysis of the Li profile of the primary star is consistent with no detection of $^6$Li and provides an upper-limit to the isotopic ratio of $^6$Li/$^7$Li~$< 10$% at this very low metallicity, about 0.5~dex lower in metallicity than previous attempts for detection of $^6$Li in extremely metal poor stars. These results do not solve or worsen the cosmological $^7$Li problem, nor support the need for non standard $^6$Li production in the early Universe.
The Li abundances of the two components of the very metal-poor ([Fe/H]=-2.5) double-lined spectroscopic binary G166-45 (BD+26 2606) are determined separately based on high resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph and its image slicer. From the photometric colors and the mass ratio the effective temperatures of the primary and secondary components are estimated to be 6350+/-100K and 5830+/-170K, respectively. The Li abundance of the primary (A(Li)=2.23) agrees well with the Spite plateau value, while that of the secondary is slightly lower (A(Li)=2.11). Such a discrepancy of the Li abundances between the two components is previously found in the extremely metal-poor, double-lined spectroscopic binary CS22876-032, however, the discrepancy in G166-45 is much smaller. The results agree with the trends found for Li abundance as a function of effective temperature (and of stellar mass) of main-sequence stars with -3.0<[Fe/H]<-2.0, suggesting that the depletion of Li at Teff ~ 5800K is not particularly large in this metallicity range. The significant Li depletion found in CS22876-032B is a phenomenon only found in the lowest metallicity range ([Fe/H]<-3).
We provide measurements of the Ba isotopic fractions for five metal-poor stars derived with an LTE analysis using 1D model stellar atmospheres. We use high resolution (Requiv{lambda}/Delta{lambda}=90000-95000), very high signal-to-noise (S/N>500) spectra to determine the fraction of odd Ba isotopes (fodd) by measuring subtle asymmetries in the profile of the Ba ii line at 4554 {AA}. We also use two different macroturbulent broadening techniques, Gaussian and radial-tangential, to model the Fe lines of each star, and propagate each technique to model macroturbulent broadening in the Ba 4554 {AA} line. We conduct a 1D non-LTE (NLTE) treatment of the Fe lines in the red giant HD122563 and the subgiant HD140283 in an attempt to improve the fitting. We determine [Ba/Eu] ratios for the two giants in our study, HD122563 and HD88609, which can also be used to determine the relative contribution of the s- and r-processes to heavy-element nucleosynthesis, for comparison with fodd. We find fodd for HD122563, HD88609 and HD84937, BD+26circ3578 and BD-04circ3208 to be -0.12pm0.07, -0.02pm0.09, and -0.05pm0.11, 0.08pm0.08 and 0.18pm0.08 respectively. This means that all stars examined here show isotopic fractions more compatible with an s-process dominated composition. The [Ba/Eu] ratios in HD122563 and HD88609 are found to be -0.20pm0.15 and -0.47pm0.15 respectively, which indicate instead an r-process signature. We report a better statistical fit to the majority of Fe profiles in each star when employing a radial-tangential broadening technique during our 1D LTE investigation. We have shown that, from a statistical point of view, one must consider using a radial-tangential broadening technique rather than a Gaussian one to model Fe line macroturbulences when working in 1D. No improvement to Fe line fitting is seen when employing a NLTE treatment.
[Context]. The standard solar model fails to predict the very low lithium abundance in the Sun, which is much lower than the proto-solar nebula. This Li problem has been debated for decades, and it has been ascribed either to planet formation or to secular stellar depletion. In order to test the evolution of Li, it is important to find solar twins in a range of ages. Also, the study of stars similar to the Sun is relevant in relation to the signature of terrestrial planet formation around the Sun. [Methods]. We acquired high-resolution (R=110,000), high S/N (~300) ESO/VLT UVES spectra of several solar twin candidates and the Sun (as reflected from the asteroid Juno). Among the solar twin candidates we identify HIP 114328 as a solar twin and perform a differential line-by-line abundance analysis of this star relative to the Sun. [Results]. HIP 114328 has stellar parameters Teff = 5785+/-10 K, log g = 4.38+/-0.03, [Fe/H] = -0.022+/-0.009, and a microturbulent velocity 0.05+/-0.03 km/s higher than solar. The differential analysis shows that this star is chemically very similar to the Sun. The refractory elements seem even slightly more depleted than in the Sun, meaning that HIP 114328 may be as likely to form terrestrial planets as the Sun. HIP 114328 is about 2 Gyr older than the Sun, and is thus the second oldest solar twin analyzed at high precision. It has a Li abundance of A(Li)NLTE <= 0.46, which is about 4 times lower than in the Sun (A(Li)NLTE = 1.07 dex), but close to the oldest solar twin known, HIP 102152. [Conclusions]. Based on the lower abundances of refractory elements when compared to other solar twins, HIP 114328 seems an excellent candidate to host rocky planets. The low Li abundance of this star is consistent with its old age and fits very well the emerging Li-age relation among solar twins of different ages.
We report the first all-optical production of a superfluid Bose-Fermi mixture with two spin states of $^6$Li (fermion) and one spin state of $^7$Li (boson) under the resonant magnetic field of the s-wave Feshbach resonance of the fermions. Fermions are cooled efficiently by evaporative cooling and they serve as coolant for bosons. As a result, a superfluid mixture can be achieved by using a simple experimental apparatus and procedures, as in the case of the all-optical production of a single Bose-Einstein condensate (BEC). We show that the all-optical method enables us to realize variety of ultracold Bose-Fermi mixtures.
The isotope abundances provide powerful diagnostics of the chemical enrichment in our Galaxy. The star HD 140283 is one of the best-studied very metal-poor dwarf stars. It is very old, and the chemical abundance in this star is a good witness of the chemical composition of the matter in the early Galaxy. The aim of this work is to measure the precise abundances of carbon, nitrogen, oxygen, and mainly the 12C/13C isotopic ratio in this very old metal-poor star in order to have a good reference for the computations of the chemical evolution of the Galaxy. We used very high spectral resolution data, with extremely high signal-to-noise ratios obtained with the spectrographs ESPaDOnS at the CFHT, ESPRESSO at the VLT, and HARPS at the ESO 3.6m telescope. For the first time, we were able to measure the 12C/13C ratio in a very old metal-poor dwarf that was born at the very beginning of the Galaxy: 27 < 12C/13C < 45. We also obtained a precise determination of the abundance of the CNO elements in this star. These abundances suggest that the effect of super-asymptotic giant branch stars or fast-rotating massive stars was significant in the early Galaxy.