Do you want to publish a course? Click here

Click-Through Rate Prediction with the User Memory Network

140   0   0.0 ( 0 )
 Added by Wentao Ouyang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Click-through rate (CTR) prediction is a critical task in online advertising systems. Models like Deep Neural Networks (DNNs) are simple but stateless. They consider each target ad independently and cannot directly extract useful information contained in users historical ad impressions and clicks. In contrast, models like Recurrent Neural Networks (RNNs) are stateful but complex. They model temporal dependency between users sequential behaviors and can achieve improved prediction performance than DNNs. However, both the offline training and online prediction process of RNNs are much more complex and time-consuming. In this paper, we propose Memory Augmented DNN (MA-DNN) for practical CTR prediction services. In particular, we create two external memory vectors for each user, memorizing high-level abstractions of what a user possibly likes and dislikes. The proposed MA-DNN achieves a good compromise between DNN and RNN. It is as simple as DNN, but has certain ability to exploit useful information contained in users historical behaviors as RNN. Both offline and online experiments demonstrate the effectiveness of MA-DNN for practical CTR prediction services. Actually, the memory component can be augmented to other models as well (e.g., the Wide&Deep model).



rate research

Read More

Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions from original features. However, since useful interactions are always sparse, it is difficult for DNN to learn them effectively under a large number of parameters. In real scenarios, artificial features are able to improve the performance of deep models (such as Wide & Deep Learning), but feature engineering is expensive and requires domain knowledge, making it impractical in different scenarios. Therefore, it is necessary to augment feature space automatically. In this paper, We propose a novel Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to learn interactions from the augmented feature space. Experimental results on three large-scale datasets show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great compatibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite useful to reduce the learning difficulties of DNN by automatically identifying important features.
Click-through rate (CTR) prediction is a critical task in online advertising systems. Existing works mainly address the single-domain CTR prediction problem and model aspects such as feature interaction, user behavior history and contextual information. Nevertheless, ads are usually displayed with natural content, which offers an opportunity for cross-domain CTR prediction. In this paper, we address this problem and leverage auxiliary data from a source domain to improve the CTR prediction performance of a target domain. Our study is based on UC Toutiao (a news feed service integrated with the UC Browser App, serving hundreds of millions of users daily), where the source domain is the news and the target domain is the ad. In order to effectively leverage news data for predicting CTRs of ads, we propose the Mixed Interest Network (MiNet) which jointly models three types of user interest: 1) long-term interest across domains, 2) short-term interest from the source domain and 3) short-term interest in the target domain. MiNet contains two levels of attentions, where the item-level attention can adaptively distill useful information from clicked news / ads and the interest-level attention can adaptively fuse different interest representations. Offline experiments show that MiNet outperforms several state-of-the-art methods for CTR prediction. We have deployed MiNet in UC Toutiao and the A/B test results show that the online CTR is also improved substantially. MiNet now serves the main ad traffic in UC Toutiao.
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems, driving personalized experience for billions of consumers. Neural architecture search (NAS), as an emerging field, has demonstrated its capabilities in discovering powerful neural network architectures, which motivates us to explore its potential for CTR predictions. Due to 1) diverse unstructured feature interactions, 2) heterogeneous feature space, and 3) high data volume and intrinsic data randomness, it is challenging to construct, search, and compare different architectures effectively for recommendation models. To address these challenges, we propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR. Via modularizing simple yet representative interactions as virtual building blocks and wiring them into a space of direct acyclic graphs, AutoCTR performs evolutionary architecture exploration with learning-to-rank guidance at the architecture level and achieves acceleration using low-fidelity model. Empirical analysis demonstrates the effectiveness of AutoCTR on different datasets comparing to human-crafted architectures. The discovered architecture also enjoys generalizability and transferability among different datasets.
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem by aggregating and transferring user preferences across multiple category domains. Therefore, it has great potential to improve click-through-rate prediction performance in online commerce platforms having many domains of products. While several cross domain sequential recommendation models have been proposed to leverage information from a source domain to improve CTR predictions in a target domain, they did not take into account bidirectional latent relations of user preferences across source-target domain pairs. As such, they cannot provide enhanced cross-domain CTR predictions for both domains simultaneously. In this paper, we propose a novel approach to cross-domain sequential recommendations based on the dual learning mechanism that simultaneously transfers information between two related domains in an iterative manner until the learning process stabilizes. In particular, the proposed Dual Attentive Sequential Learning (DASL) model consists of two novel components Dual Embedding and Dual Attention, which jointly establish the two-stage learning process: we first construct dual latent embeddings that extract user preferences in both domains simultaneously, and subsequently provide cross-domain recommendations by matching the extracted latent embeddings with candidate items through dual-attention learning mechanism. We conduct extensive offline experiments on three real-world datasets to demonstrate the superiority of our proposed model, which significantly and consistently outperforms several state-of-the-art baselines across all experimental settings. We also conduct an online A/B test at a major video streaming platform Alibaba-Youku, where our proposed model significantly improves business performance over the latest production system in the company.
Click-through rate (CTR) prediction is one of the most central tasks in online advertising systems. Recent deep learning-based models that exploit feature embedding and high-order data nonlinearity have shown dramatic successes in CTR prediction. However, these models work poorly on cold-start ads with new IDs, whose embeddings are not well learned yet. In this paper, we propose Graph Meta Embedding (GME) models that can rapidly learn how to generate desirable initial embeddings for new ad IDs based on graph neural networks and meta learning. Previous works address this problem from the new ad itself, but ignore possibly useful information contained in existing old ads. In contrast, GMEs simultaneously consider two information sources: the new ad and existing old ads. For the new ad, GMEs exploit its associated attributes. For existing old ads, GMEs first build a graph to connect them with new ads, and then adaptively distill useful information. We propose three specific GMEs from different perspectives to explore what kind of information to use and how to distill information. In particular, GME-P uses Pre-trained neighbor ID embeddings, GME-G uses Generated neighbor ID embeddings and GME-A uses neighbor Attributes. Experimental results on three real-world datasets show that GMEs can significantly improve the prediction performance in both cold-start (i.e., no training data is available) and warm-up (i.e., a small number of training samples are collected) scenarios over five major deep learning-based CTR prediction models. GMEs can be applied to conversion rate (CVR) prediction as well.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا