No Arabic abstract
Unmanned aerial vehicles (UAV), commonly referred to as drones, have raised increasing interest in recent years. Search and rescue scenarios where humans in emergency situations need to be quickly found in areas difficult to access constitute an important field of application for this technology. While research efforts have mostly focused on developing video-based solutions for this task cite{lopez2017cvemergency}, UAV-embedded audio-based localization has received relatively less attention. Though, UAVs equipped with a microphone array could be of critical help to localize people in emergency situations, in particular when video sensors are limited by a lack of visual feedback due to bad lighting conditions or obstacles limiting the field of view. This motivated the topic of the 6th edition of the IEEE Signal Processing Cup (SP Cup): a UAV-embedded sound source localization challenge for search and rescue. In this article, we share an overview of the IEEE SP Cup experience including the competition tasks, participating teams, technical approaches and statistics.
Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and perceived. A third approach (vocoders/synthesizers) successfully incorporates strong domain knowledge of signal processing and perception, but has been less actively researched due to limited expressivity and difficulty integrating with modern auto-differentiation-based machine learning methods. In this paper, we introduce the Differentiable Digital Signal Processing (DDSP) library, which enables direct integration of classic signal processing elements with deep learning methods. Focusing on audio synthesis, we achieve high-fidelity generation without the need for large autoregressive models or adversarial losses, demonstrating that DDSP enables utilizing strong inductive biases without losing the expressive power of neural networks. Further, we show that combining interpretable modules permits manipulation of each separate model component, with applications such as independent control of pitch and loudness, realistic extrapolation to pitches not seen during training, blind dereverberation of room acoustics, transfer of extracted room acoustics to new environments, and transformation of timbre between disparate sources. In short, DDSP enables an interpretable and modular approach to generative modeling, without sacrificing the benefits of deep learning. The library is publicly available at https://github.com/magenta/ddsp and we welcome further contributions from the community and domain experts.
IEEE BigData 2021 Cup: Soft Sensing at Scale is a data mining competition organized by Seagate Technology, in association with the IEEE BigData 2021 conference. The scope of this challenge is to tackle the task of classifying soft sensing data with machine learning techniques. In this paper we go into the details of the challenge and describe the data set provided to participants. We define the metrics of interest, baseline models, and describe approaches we found meaningful which may be a good starting point for further analysis. We discuss the results obtained with our approaches and give insights on what potential challenges participants may run into. Students, researchers, and anyone interested in working on a major industrial problem are welcome to participate in the challenge!
With the development of deep learning and artificial intelligence, audio synthesis has a pivotal role in the area of machine learning and shows strong applicability in the industry. Meanwhile, significant efforts have been dedicated by researchers to handle multimodal tasks at present such as audio-visual multimodal processing. In this paper, we conduct a survey on audio synthesis and audio-visual multimodal processing, which helps understand current research and future trends. This review focuses on text to speech(TTS), music generation and some tasks that combine visual and acoustic information. The corresponding technical methods are comprehensively classified and introduced, and their future development trends are prospected. This survey can provide some guidance for researchers who are interested in the areas like audio synthesis and audio-visual multimodal processing.
We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech enhancement methods that learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with a long time dependency, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and generalizes well to noise types that are not present in the training set.
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch between the training and inference process, that results in unpredictable performance for out-of-domain test data at run-time. To overcome this, we propose a teacher-student training scheme for Tacotron-based TTS by introducing a distillation loss function in addition to the feature loss function. We first train a Tacotron2-based TTS model by always providing natural speech frames to the decoder, that serves as a teacher model. We then train another Tacotron2-based model as a student model, of which the decoder takes the predicted speech frames as input, similar to how the decoder works during run-time inference. With the distillation loss, the student model learns the output probabilities from the teacher model, that is called knowledge distillation. Experiments show that our proposed training scheme consistently improves the voice quality for out-of-domain test data both in Chinese and English systems.