No Arabic abstract
We theoretically study the optical generation of dc spin current (i.e., a spin-current solar cell) in ordered antiferromagnetic and ferrimagnetic insulators, motivated by a recent study on the laser-driven spinon spin current in noncentrosymmetric quantum spin chains [H. Ishizuka and M. Sato, Phys. Rev. Lett. 122, 197702 (2019)]. Using a non-linear response theory for magnons, we analyze the dc spin current generated by a linearly-polarized electromagnetic wave (typically, terahertz or gigahertz waves). Considering noncentrosymmetric two-sublattice magnets as an example, we find a finite dc spin current conductivity at $T=0$, where no thermally-excited magnons exist; this is in contrast to the case of the spinon spin current, in which the optical transition of the Fermi degenerate spinons plays an essential role. We find that the dc spin-current conductivity is insensitive to the Gilbert damping, i.e., it may be viewed as a shift current carried by bosonic particles (magnons). Our estimate shows that an electric-field intensity of $Esim10^4-10^6$ V/cm is sufficient for an observable spin current. Our theory indicates that the linearly-polarized electromagnetic wave generally produces a dc spin current in noncentrosymmetric magnetic insulators.
While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, we outline simple design principles for the optimization of shift currents for frequencies near the band gap, derived from the analysis of a general effective model. The use of a novel sum rule allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions via Berry connections in addition to standard band structure. We use our approach to identify two new classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS. We introduce tight-binding models for these systems, and show that they exhibit the largest shift current responsivities at the band edge reported so far. Moreover, exploring the parameter space of these models we find photoresponsivities that can exceed $100$ mA/W. Our results show how the study of the shift current via effective models allows one to improve the possible efficiency of devices based on this mechanism and better grasp their potential to compete with conventional solar cells.
The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-dependent transport through a non-magnetic nanoconstriction separating two magnetic layers was investigated. Unexpected results such as vortices of spin-currents in the vicinity of the nanoconstriction were obtained. The angular variations of magnetoresistance and spin-transfer torque are strongly influenced by the structure geometry.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, an abrupt breakdown of the dissipationless state occurs with a relatively small critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by studying multi-terminal devices and identified that the electric field created between opposing chiral edge states lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Greens function method and general non-linear $S^sigma-V$ and $S^tau-V$ relations were derived as a function of angle $theta$ between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to $sintheta$ when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of $theta$. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage $N_tau$ behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque $N_tau$ is a concave function of $theta$ near the resonance while it becomes convex function of $theta$ far away from resonance. For certain bias voltages, the period $N_tau(theta)$ becomes $pi$ instead of $2pi$. For small $theta$, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.
Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. Based on our first-principles implementation, we apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of W. It leads to negative and positive effective spin Hall angles, respectively, which can be directly identified in experiments. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the spin current picture by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.