Do you want to publish a course? Click here

Analytically parameterized solutions for robust quantum control using smooth pulses

103   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Achieving high-fidelity control of quantum systems is essential for realization of a practical quantum computer. Composite pulse sequences which suppress different types of errors can be nested to suppress a wide variety of errors but the result is often not optimal, especially in the presence of constraints such as bandwidth limitations. Robust smooth pulse shaping provides flexibility, but obtaining such analytical pulse shapes is a non-trivial problem, and choosing the appropriate parameters typically requires a numerical search in a high-dimensional space. In this work, we extend a previous analytical treatment of robust smooth pulses to allow the determination of pulse parameters without numerical search. We also show that the problem can be reduced to a set of coupled ordinary differential equations which allows for a more streamlined numerical treatment.

rate research

Read More

Precise qubit manipulation is fundamental to quantum computing, yet experimental systems generally have stray coupling between the qubit and the environment, which hinders the necessary high-precision control. We report here the first theoretical progress in correcting an important class of errors stemming from fluctuations in the magnetic field gradient, in the context of the singlet-triplet spin qubit in a semiconductor double quantum dot. These errors are not amenable to correction via control techniques developed in other contexts, since here the experimenter has precise control only over the rotation rate about the z-axis of the Bloch sphere, and this rate is furthermore restricted to be positive and bounded. Despite these strong constraints, we construct simple electrical pulse sequences that, for small gradients, carry out z-axis rotations while canceling errors up to the sixth order in gradient fluctuations, and for large gradients, carry out arbitrary rotations while canceling the leading order error.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi-flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust preparation of a quantum state using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.
We study finite-time Landau-Zener transitions at a singlet-triplet level crossing in a GaAs double quantum dot, both experimentally and theoretically. Sweeps across the anticrossing in the high driving speed limit result in oscillations with a small visibility. Here we demonstrate how to increase the oscillation visibility while keeping sweep times shorter than T2* using a tailored pulse with a detuning dependent level velocity. Our results show an improvement of a factor ~2.9 for the oscillation visibility. In particular, we were able to obtain a visibility of ~0.5 for Stuckelberg oscillations, which demonstrates the creation of an equally weighted superposition of the qubit states.
The presence of decoherence in quantum computers necessitates the suppression of noise. Dynamically corrected gates via specially designed control pulses offer a path forward, but hardware-specific experimental constraints can cause complications. Here, we present a widely applicable method for obtaining smooth pulses which is not based on a sampling approach and does not need any assumptions with regards to the underlying statistics of the experimental noise. We demonstrate the capability of our approach by finding smooth shapes which suppress the effects of noise within the logical subspace as well as leakage out of that subspace.
Quantum control of individual spins in condensed matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation, and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual spin control to nanoscale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual spin control can be achieved with few-nm resolution for proximal electron spins by performing single-spin magnetic resonance imaging (MRI), which is realized via a scanning magnetic field gradient that is both strong enough to achieve nanometric spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and achieve nanometric resolution in imaging, characterization, and manipulation of individual spins. For NV centers, our results in individual spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution compared to conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement, and nanoscale magnetometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا