Do you want to publish a course? Click here

Composite pulses for robust universal control of singlet-triplet qubits

206   0   0.0 ( 0 )
 Added by Xin Wang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Precise qubit manipulation is fundamental to quantum computing, yet experimental systems generally have stray coupling between the qubit and the environment, which hinders the necessary high-precision control. We report here the first theoretical progress in correcting an important class of errors stemming from fluctuations in the magnetic field gradient, in the context of the singlet-triplet spin qubit in a semiconductor double quantum dot. These errors are not amenable to correction via control techniques developed in other contexts, since here the experimenter has precise control only over the rotation rate about the z-axis of the Bloch sphere, and this rate is furthermore restricted to be positive and bounded. Despite these strong constraints, we construct simple electrical pulse sequences that, for small gradients, carry out z-axis rotations while canceling errors up to the sixth order in gradient fluctuations, and for large gradients, carry out arbitrary rotations while canceling the leading order error.



rate research

Read More

Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with voltage-controlled exchange interaction has shown improved two-qubit gate fidelities from the application of oscillating exchange along with a strong magnetic field gradient between adjacent dots. By examining how noise propagates in the time-evolution operator of the system, we find an optimal set of parameters that provide passive stroboscopic circumvention of errors in two-qubit gates to first order. We predict over 99% two-qubit gate fidelities in the presence of quasistatic and 1/$textit{f}$ noise, which is an order of magnitude improvement over the typical unoptimized implementation.
Singlet-triplet qubits in lateral quantum dots in semiconductor heterostructures exhibit high-fidelity single-qubit gates via exchange interactions and magnetic field gradients. High-fidelity two-qubit entangling gates are challenging to generate since weak interqubit interactions result in slow gates that accumulate error in the presence of noise. However, the interqubit electrostatic interaction also produces a shift in the local double well detunings, effectively changing the dependence of exchange on the gate voltages. We consider an operating point where the effective exchange is first order insensitive to charge fluctuations while maintaining nonzero interactions. This sweet spot exists only in the presence of interactions. We show that working at the interacting sweet spot can directly produce maximally entangling gates and we simulate the gate evolution under realistic 1/f noise. We report theoretical two-qubit gate fidelities above 99% in GaAs and Si systems.
Quantum computers have the potential to solve certain interesting problems significantly faster than classical computers. To exploit the power of a quantum computation it is necessary to perform inter-qubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor due to their potential for scalability and miniaturization. However, their weak interactions with the environment, which leads to their long coherence times, makes inter-qubit operations challenging. We perform a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography we measure the full density matrix of the system and determine the concurrence and the fidelity of the generated state, providing proof of entanglement.
We report individual confinement and two-axis qubit operations of two electron spin qubits in GaAs gate-defined sextuple quantum dot array with integrated micro-magnet. As a first step toward multiple qubit operations, we demonstrate coherent manipulations of three singlet-triplet qubits showing underdamped Larmor and Ramsey oscillations in all double dot sites. We provide an accurate measure of site site-dependent field gradients and rms electric and magnetic noise, and we discuss the adequacy of simple rectangular micro-magnet for practical use in multiple quantum dot arrays. We also discuss current limitations and possible strategies for realizing simultaneous multi multi-qubit operations in extended linear arrays.
We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا