Do you want to publish a course? Click here

Structure of Superconducting Ca-intercalated Bilayer Graphene/SiC studied using Total-Reflection High-Energy Positron Diffraction

198   0   0.0 ( 0 )
 Added by Yukihiro Endo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the atomic structure of superconducting Ca-intercalated bilayer graphene on a SiC(0001) substrate using total-reflection high-energy positron diffraction. By comparing the experimental rocking-curves with ones calculated for various structural models using a full-dynamical theory, we have found that Ca atoms are intercalated in the graphene-buffer interlayer, rather than between the two graphene layers. From transport measurements, the superconducting transition was observed to be at Tc_onset = 4K for this structure. This study is the first to clearly identify the relation between the atomic arrangement and superconductivity in Ca-intercalated bilayer graphene.



rate research

Read More

160 - I.I. Mazin , A.V. Balatsky 2008
Recent observation of proximity effect cite{Morpurgo:2007} has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable $T_{c}$. We find substantial and suggestive similarities between Ca-intercalated bilayer (C$_{6}$CaC$_{6}$), and CaC$_{6} $, an established superconductor with $T_{c}$ = 11.5 K. In particular, the nearly free electron band, proven to be instrumental for superconductivity in intercalated graphites, does cross the chemical potential in (C$_{6}$CaC$% _{6}$), despite the twice smaller doping level, satisfying the so-called textquotedblleft Cambridge criteriontextquotedblright . Calculated properties of zone-center phonons are very similar to those of CaC$%_{6}.$ This suggests that the critical temperature would probably be on the same scale as in CaC$_{6}$.
The epitaxial growth of complex oxide thin films provide three avenues to generate unique properties: the ability to influence the 3-dimensional structure of the film, the presence of a surface, and the generation of an interface. In all three cases, a clear understanding of the resulting atomic structure is desirable. However, determining the full structure of an epitaxial thin film (lattice parameters, space group, atomic positions, surface reconstructions) on a routine basis is a serious challenge. In this paper we highlight the remarkable information that can be extracted from both the Bragg scattering and inelastic multiple scattering events that occur during Reflection High Energy Electron Diffraction. We review some methods to extract structural information and show how mature techniques used in other fields can be directly applied to the {em in-situ} and real-time diffraction images of a growing film. These collection of techniques give access to both the epitaxially influenced 3 dimensional bulk structure of the film, and any reconstructions that may happen at the surface.
We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).
The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlation functional in the density functional method. Numerical convergence versus k-point sampling and basis set completeness are demonstrated to be better than 1 meV/atom. The parameters of several generalized anisotropic next-nearest-neighbor Ising models are extracted and their significance and consequences for epitaxial growth are discussed.
We use angle-resolved photoemission spectroscopy to investigate the electronic structure of bilayer graphene at high n-doping and extreme displacement fields, created by intercalating epitaxial monolayer graphene on silicon carbide with magnesium to form quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide. Angle-resolved photoemission spectroscopy reveals that upon magnesium intercalation, the single massless Dirac band of epitaxial monolayer graphene is transformed into the characteristic massive double-band Dirac spectrum of quasi-freestanding bilayer graphene. Analysis of the spectrum using a simple tight binding model indicates that magnesium intercalation results in an n-type doping of 2.1 $times$ 10$^{14}$ cm$^{-2}$, creates an extremely high displacement field of 2.6 V/nm, opening a considerable gap of 0.36 eV at the Dirac point. This is further confirmed by density-functional theory calculations for quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide, which show a similar doping level, displacement field and bandgap. Finally, magnesium-intercalated samples are surprisingly robust to ambient conditions; no significant changes in the electronic structure are observed after 30 minutes exposure in air.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا