No Arabic abstract
We study the structural origin of the Bauschinger effect by accessing numerically the local plastic thresholds in the steady state flow of a two-dimensional model glass under athermal quasistatic deformation. More specifically, we compute the local residual strength, $Deltatau^{c}$, for arbitrary loading orientations and find that plastic deformation generically induces material polarization, i.e., a forward-backward asymmetry in the $Deltatau^{c}$ distribution. In steady plastic flow, local packings are on average closer to forward (rather than backward) instabilities, due to the stress-induced bias of barriers. However, presumably due to mechanical noise, a significant fraction of zones lie close to reverse (backward) yielding, as the distribution of $Deltatau^{c}$ for reverse shearing extends quasilinearly down to zero local residual strength. By constructing an elementary model of the early plastic response, we then show that unloading causes reverse plasticity of a growing amplitude, i.e., reverse softening, while it shifts away forward-yielding barriers. This result in an inversion of polarization in the low-$Deltatau^{c}$ region and, consequently, in the Bauschinger effect. This scenario is quite generic, which explains the pervasiveness of the effect.
We measure the local yield stress, at the scale of small atomic regions, in a deeply quenched two-dimensional glass model undergoing shear banding in response to athermal quasistatic (AQS) deformation. We find that the occurrence of essentially a single plastic event suffices to bring the local yield stress distribution to a well-defined value for all strain orientations, thus essentially erasing the memory of the initial structure. It follows that in a well-relaxed sample, plastic events cause the abrupt (nucleation-like) emergence of a local softness contrast and thus precipitate the formation of a band, which, in its early stages, is measurably softer than the steady-state flow. Moreover, this postevent yield stress ensemble presents a mean value comparable to that of the inherent states of a supercooled liquid around the mode-coupling temperature $T_{rm MCT}$. This, we argue, explains that the transition between brittle and ductile yielding in amorphous materials occurs around a comparable parent temperature. Our data also permit to capture quantitatively the contributions of pressure and density changes and demonstrate unambiguously that they are negligible compared with the changes of softness caused by structural rejuvenation.
Structural heterogeneity of amorphous solids present difficult challenges that stymie the prediction of plastic events, which are intimately connected to their mechanical behavior. Based on a perturbation analysis of the potential energy landscape, we derive the atomic nonaffinity as an indicator with intrinsic orientation, which quantifies the contribution of an individual atom to the total nonaffine modulus of the system. We find that the atomic nonaffinity can efficiently characterize the locations of the shear transformation zones, with a predicative capacity comparable to the best indicators. More importantly, the atomic nonaffinity, combining the sign of third order derivative of energy with respect to coordinates, reveals an intrinsic softest shear orientation. By analyzing the angle between this orientation and the shear loading direction, it is possible to predict the protocol-dependent response of plastic events. Employing the new method, the distribution of orientations of shear transformation zones in a model two-dimensional amorphous solids can be measured. The resulting plastic events can be understood from a simple model of independent plastic events occurring at variously oriented shear transformation zones. These results shed light on the characterization and prediction of the mechanical response of amorphous solids.
Glasses have a large excess of low-frequency vibrational modes in comparison with continuous elastic body, the so-called Boson Peak, which appears to correlate with several crucial properties of glasses, such as transport or fragility. I review recent results showing that the Boson Peak is a necessary consequence of the weak connectivity of the solid. I explain why in assemblies repulsive spheres the boson peak shifts up to zero frequency as the pressure is lowered toward the jamming threshold, and derive the corresponding exponent. I show how these ideas capture the main low-frequency features of the vibrational spectrum of amorphous silica. These results extend arguments of Phillips on the presence of floppy modes in under-constrained covalent networks to glasses where the covalent network is rigid, or when interactions are purely radial.
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of such athermal solids are governed by local conditions of mechanical equilibrium, i.e., force and torque balance of its constituents. Here we show that these constraints have the mathematical structure of a generalized electromagnetism, where the electrostatic limit successfully captures the anisotropic elasticity of amorphous solids. The emergence of elasticity from local mechanical constraints offers a new paradigm for systems with no broken symmetry, analogous to emergent gauge theories of quantum spin liquids. Specifically, our $U(1)$ rank-2 symmetric tensor gauge theory of elasticity translates to the electromagnetism of fractonic phases of matter with the stress mapped to electric displacement and forces to vector charges. We corroborate our theoretical results with numerical simulations of soft frictionless disks in both two and three dimensions, and experiments on frictional disks in two dimensions. We also present experimental evidence indicating that force chains in granular media are sub-dimensional excitations of amorphous elasticity similar to fractons.
We study the influence of surface roughness on the adhesion of elastic solids. Most real surfaces have roughness on many different length scales, and this fact is taken into account in our analysis. We consider in detail the case when the surface roughness can be described as a self affine fractal, and show that when the fractal dimension D_f >2.5, the adhesion force may vanish, or be at least strongly reduced. We consider the block-substrate pull-off force as a function of roughness, and find a partial detachment transition preceding a full detachment one. The theory is in good qualitative agreement with experimental data.