Do you want to publish a course? Click here

CORAL8: Concurrent Object Regression for Area Localization in Medical Image Panels

94   0   0.0 ( 0 )
 Added by Arnold Wiliem
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work tackles the problem of generating a medical report for multi-image panels. We apply our solution to the Renal Direct Immunofluorescence (RDIF) assay which requires a pathologist to generate a report based on observations across the eight different WSI in concert with existing clinical features. To this end, we propose a novel attention-based multi-modal generative recurrent neural network (RNN) architecture capable of dynamically sampling image data concurrently across the RDIF panel. The proposed methodology incorporates text from the clinical notes of the requesting physician to regulate the output of the network to align with the overall clinical context. In addition, we found the importance of regularizing the attention weights for word generation processes. This is because the system can ignore the attention mechanism by assigning equal weights for all members. Thus, we propose two regularizations which force the system to utilize the attention mechanism. Experiments on our novel collection of RDIF WSIs provided by a large clinical laboratory demonstrate that our framework offers significant improvements over existing methods.



rate research

Read More

Modern-day problems in statistics often face the challenge of exploring and analyzing complex non-Euclidean object data that do not conform to vector space structures or operations. Examples of such data objects include covariance matrices, graph Laplacians of networks and univariate probability distribution functions. In the current contribution a new concurrent regression model is proposed to characterize the time-varying relation between an object in a general metric space (as response) and a vector in $reals^p$ (as predictor), where concepts from Frechet regression is employed. Concurrent regression has been a well-developed area of research for Euclidean predictors and responses, with many important applications for longitudinal studies and functional data. We develop generaliz
132 - Wenhui Lei , Wei Xu , Ran Gu 2020
Deep learning networks have shown promising performance for accurate object localization in medial images, but require large amount of annotated data for supervised training, which is expensive and expertise burdensome. To address this problem, we present a one-shot framework for organ and landmark localization in volumetric medical images, which does not need any annotation during the training stage and could be employed to locate any landmarks or organs in test images given a support (reference) image during the inference stage. Our main idea comes from that tissues and organs from different human bodies have a similar relative position and context. Therefore, we could predict the relative positions of their non-local patches, thus locate the target organ. Our framework is composed of three parts: (1) A projection network trained to predict the 3D offset between any two patches from the same volume, where human annotations are not required. In the inference stage, it takes one given landmark in a reference image as a support patch and predicts the offset from a random patch to the corresponding landmark in the test (query) volume. (2) A coarse-to-fine framework contains two projection networks, providing more accurate localization of the target. (3) Based on the coarse-to-fine model, we transfer the organ boundingbox (B-box) detection to locating six extreme points along x, y and z directions in the query volume. Experiments on multi-organ localization from head-and-neck (HaN) CT volumes showed that our method acquired competitive performance in real time, which is more accurate and 10^5 times faster than template matching methods with the same setting. Code is available: https://github.com/LWHYC/RPR-Loc.
109 - Haichou Chen , Yishu Deng , Bin Li 2021
Delineating the lesion area is an important task in image-based diagnosis. Pixel-wise classification is a popular approach to segmenting the region of interest. However, at fuzzy boundaries such methods usually result in glitches, discontinuity, or disconnection, inconsistent with the fact that lesions are solid and smooth. To overcome these undesirable artifacts, we propose the BezierSeg model which outputs bezier curves encompassing the region of interest. Directly modelling the contour with analytic equations ensures that the segmentation is connected, continuous, and the boundary is smooth. In addition, it offers sub-pixel accuracy. Without loss of accuracy, the bezier contour can be resampled and overlaid with images of any resolution. Moreover, a doctor can conveniently adjust the curves control points to refine the result. Our experiments show that the proposed method runs in real time and achieves accuracy competitive with pixel-wise segmentation models.
Automatically generating a natural language description of an image is a task close to the heart of image understanding. In this paper, we present a multi-model neural network method closely related to the human visual system that automatically learns to describe the content of images. Our model consists of two sub-models: an object detection and localization model, which extract the information of objects and their spatial relationship in images respectively; Besides, a deep recurrent neural network (RNN) based on long short-term memory (LSTM) units with attention mechanism for sentences generation. Each word of the description will be automatically aligned to different objects of the input image when it is generated. This is similar to the attention mechanism of the human visual system. Experimental results on the COCO dataset showcase the merit of the proposed method, which outperforms previous benchmark models.
In this work, we propose an AI-based method that intends to improve the conventional retinal disease treatment procedure and help ophthalmologists increase diagnosis efficiency and accuracy. The proposed method is composed of a deep neural networks-based (DNN-based) module, including a retinal disease identifier and clinical description generator, and a DNN visual explanation module. To train and validate the effectiveness of our DNN-based module, we propose a large-scale retinal disease image dataset. Also, as ground truth, we provide a retinal image dataset manually labeled by ophthalmologists to qualitatively show, the proposed AI-based method is effective. With our experimental results, we show that the proposed method is quantitatively and qualitatively effective. Our method is capable of creating meaningful retinal image descriptions and visual explanations that are clinically relevant.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا