No Arabic abstract
Nonlocal game as a novel witness of the nonlocality of entanglement is of fundamental importance in various fields. The known nonlocal games or equivalent linear Bell inequalities are only useful for Bell networks of single entanglement. Our goal in this paper is to propose a unified method for constructing cooperating games in network scenarios. We first propose an efficient method to construct numerous multipartite games from any graphs. The main idea is the graph representation of entanglement-based quantum networks. We further specify these graphic games with quantum advantages by providing a simple sufficient and necessary condition. The graphic games imply the first linear testing of the nonlocality of general quantum networks consisting of EPR states. It also allows generating new instances going beyond well-known CHSH games. Our result has interesting applications in quantum networks, Bell theory, computational complexity, and theoretical computer science.
In economics duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called `leader-follower model. We give a quantum perspective on Stackelberg duopoly that gives a backwards-induction outcome same as the Nash equilibrium in static form of duopoly also known as Cournots duopoly. We find two qubit quantum pure states required for this purpose.
Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2 x N states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states SPPT (for strong PPT). Therefore, we provide a natural witness for a quantum discord: if a 2 x N state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.
Hybrid quantum systems aim at combining the advantages of different physical systems and to produce novel quantum devices. In particular, the hybrid combination of superconducting circuits and spins in solid-state crystals is a versatile platform to explore many quantum electrodynamics problems. Recently, the remote coupling of nitrogen-vacancy center spins in diamond via a superconducting bus was demonstrated. However, a rigorous experimental test of the quantum nature of this hybrid system and in particular entanglement is still missing. We review the theoretical ideas to generate and detect entanglement, and present our own scheme to achieve this.
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exists, where the quantum Game of Life creates more complexity, in terms of diversity, with respect to the corresponding classical reversible one.
The often elusive Poincare recurrence can be witnessed in a completely separable system. For such systems, the problem of recurrence reduces to the classic mathematical problem of simultaneous Diophantine approximation of multiple numbers. The latter problem then can be somewhat satisfactorily solved by using the famous Lenstra-Lenstra-Lov{a}sz (LLL) algorithm, which is implemented in the Mathematica built-in function verbLatticeReduce. The procedure is illustrated with a harmonic chain. The incredibly large recurrence times are obtained exactly. They follow the expected scaling law very well.