No Arabic abstract
Blind image deblurring is a long standing challenging problem in image processing and low-level vision. Recently, sophisticated priors such as dark channel prior, extreme channel prior, and local maximum gradient prior, have shown promising effectiveness. However, these methods are computationally expensive. Meanwhile, since these priors involved subproblems cannot be solved explicitly, approximate solution is commonly used, which limits the best exploitation of their capability. To address these problems, this work firstly proposes a simplified sparsity prior of local minimal pixels, namely patch-wise minimal pixels (PMP). The PMP of clear images is much more sparse than that of blurred ones, and hence is very effective in discriminating between clear and blurred images. Then, a novel algorithm is designed to efficiently exploit the sparsity of PMP in deblurring. The new algorithm flexibly imposes sparsity inducing on the PMP under the MAP framework rather than directly uses the half quadratic splitting algorithm. By this, it avoids non-rigorous approximation solution in existing algorithms, while being much more computationally efficient. Extensive experiments demonstrate that the proposed algorithm can achieve better practical stability compared with state-of-the-arts. In terms of deblurring quality, robustness and computational efficiency, the new algorithm is superior to state-of-the-arts. Code for reproducing the results of the new method is available at https://github.com/FWen/deblur-pmp.git.
Blind image deblurring is an important yet very challenging problem in low-level vision. Traditional optimization based methods generally formulate this task as a maximum-a-posteriori estimation or variational inference problem, whose performance highly relies on the handcraft priors for both the latent image and the blur kernel. In contrast, recent deep learning methods generally learn, from a large collection of training images, deep neural networks (DNNs) directly mapping the blurry image to the clean one or to the blur kernel, paying less attention to the physical degradation process of the blurry image. In this paper, we present a deep variational Bayesian framework for blind image deblurring. Under this framework, the posterior of the latent clean image and blur kernel can be jointly estimated in an amortized inference fashion with DNNs, and the involved inference DNNs can be trained by fully considering the physical blur model, together with the supervision of data driven priors for the clean image and blur kernel, which is naturally led to by the evidence lower bound objective. Comprehensive experiments are conducted to substantiate the effectiveness of the proposed framework. The results show that it can not only achieve a promising performance with relatively simple networks, but also enhance the performance of existing DNNs for deblurring.
Artificial Intelligence (AI)-powered pathology is a revolutionary step in the world of digital pathology and shows great promise to increase both diagnosis accuracy and efficiency. However, defocus and motion blur can obscure tissue or cell characteristics hence compromising AI algorithmsaccuracy and robustness in analyzing the images. In this paper, we demonstrate a deep-learning-based approach that can alleviate the defocus and motion blur of a microscopic image and output a sharper and cleaner image with retrieved fine details without prior knowledge of the blur type, blur extent and pathological stain. In this approach, a deep learning classifier is first trained to identify the image blur type. Then, two encoder-decoder networks are trained and used alone or in combination to deblur the input image. It is an end-to-end approach and introduces no corrugated artifacts as traditional blind deconvolution methods do. We test our approach on different types of pathology specimens and demonstrate great performance on image blur correction and the subsequent improvement on the diagnosis outcome of AI algorithms.
The parameter selection is crucial to regularization based image restoration methods. Generally speaking, a spatially fixed parameter for regularization item in the whole image does not perform well for both edge and smooth areas. A larger parameter of regularization item reduces noise better in smooth areas but blurs edge regions, while a small parameter sharpens edge but causes residual noise. In this paper, an automated spatially adaptive regularization model, which combines the harmonic and TV models, is proposed for reconstruction of noisy and blurred images. In the proposed model, it detects the edges and then spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to the edge information. Accordingly, the edge information matrix will be also dynamically updated during the iterations. Computationally, the newly-established model is convex, which can be solved by the semi-proximal alternating direction method of multipliers (sPADMM) with a linear-rate convergence rate. Numerical simulation results demonstrate that the proposed model effectively reserves the image edges and eliminates the noise and blur at the same time. In comparison to state-of-the-art algorithms, it outperforms other methods in terms of PSNR, SSIM and visual quality.
Image denoising is the process of removing noise from noisy images, which is an image domain transferring task, i.e., from a single or several noise level domains to a photo-realistic domain. In this paper, we propose an effective image denoising method by learning two image priors from the perspective of domain alignment. We tackle the domain alignment on two levels. 1) the feature-level prior is to learn domain-invariant features for corrupted images with different level noise; 2) the pixel-level prior is used to push the denoised images to the natural image manifold. The two image priors are based on $mathcal{H}$-divergence theory and implemented by learning classifiers in adversarial training manners. We evaluate our approach on multiple datasets. The results demonstrate the effectiveness of our approach for robust image denoising on both synthetic and real-world noisy images. Furthermore, we show that the feature-level prior is capable of alleviating the discrepancy between different level noise. It can be used to improve the blind denoising performance in terms of distortion measures (PSNR and SSIM), while pixel-level prior can effectively improve the perceptual quality to ensure the realistic outputs, which is further validated by subjective evaluation.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appears across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.