We study optical gain in a gas of cold 39K atoms. The gain is observed during operation of a conventional magneto-optical trap without the need for additional fields. Measurements of transmission spectra from a weak probe show that the gain is due to stimulated Raman scattering between hyperfine ground states. The experimental results are reproduced by a simplified six-level model, which also helps explain why such gain is not observed in similar experiments with rubidium or cesium.
Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat grating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.
We present a magneto-optical trap (MOT) design based on millimeter ball lenses, contained within a metal cube of 0.75$^{prime prime}$ side length. We present evidence of trapping approximately $4.2times 10^5$ of $^{85}$Rb atoms with a number density of $3.2times 10^9$ atoms/cm$^{3}$ and a loading time of 1.3 s. Measurement and a kinetic laser-cooling model are used to characterize the atom trap design. The design provides several advantages over other types of MOTs: the laser power requirement is low, the small lens and cube sizes allow for miniaturization of MOT applications, and the lack of large-diameter optical beam pathways prevents external blackbody radiation from entering the trapping region.
A large number of $^{87}$Rb atoms (up to $1.5 times 10^{11}$) is confined and cooled to $sim 200~mu$K in a magneto-optical trap. The resulting cloud of atoms exhibits spatio-temporal instabilities leading to chaotic behaviour resembling a turbulent flow of fluid. We apply the methods of the turbulence theory based on the structure functions analysis to classify and quantify the different degrees of excitation of turbulence, including its scaling and morphological properties in the moving cloud images.
We present a novel optical cooling scheme that relies on hyperfine dark states to enhance loading and cooling atoms inside deep optical dipole traps. We demonstrate a seven-fold increase in the number of atoms loaded in the conservative potential with strongly shifted excited states. In addition, we use the energy selective dark-state to efficiently cool the atoms trapped inside the conservative potential rapidly and without losses. Our findings open the door to optically assisted cooling of trapped atoms and molecules which lack the closed cycling transitions normally needed to achieve low temperatures and the high initial densities required for evaporative cooling.
We report the first observation of a non-dipole transition in an ultra-cold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in $^{23}$Na confined in a Magneto-Optical Trap(MOT), and demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P$_{1/2}$ level and extracting the magnetic dipole constant A $=$ 30.6 $pm$ 0.1 MHz. We use cw OODR (Optical-Optical Double Resonance) accompanied by photoinization to probe the transition.