Do you want to publish a course? Click here

Observation of a first order phase transition to metal hydrogen near 425 GPa

291   0   0.0 ( 0 )
 Added by Paul Loubeyre
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper predicting metal hydrogen2): the electrons and the protons are strongly coupled to each other and ultimately must be treated equally3)4). The determination of how and when molecular solid hydrogen will transform into a metal is the stepping stone towards a full understanding of the quantum-many body properties of dense hydrogen. The quest for metal hydrogen has pushed major developments of modern experimental high pressure physics, yet the various claims of its observation over the past 30 years have remained controversial5)6)7). Here we show a first order phase transition near 425 GPa from insulator molecular solid hydrogen to metal hydrogen. Pressure in excess of 400 GPa could be achieved by using the recently developed Toroidal Diamond Anvil Cell (T-DAC)8). The structural and electronic properties of dense solid hydrogen at 80 K have been characterized by synchrotron infrared spectroscopy. The continuous vibron frequency shift and the electronic band gap closure down to 0.5 eV, both linearly evolving with pressure, point to the stability of the insulator C2/c-24 phase up to the metallic transition. Upon pressure release, the metallic state transforms back to the C2/c-24 phase with almost no hysteresis, hence suggesting that the metallization proceeds through a structural transformation within the molecular solid, presumably to the Cmca-12 structure. Our results are in good agreement with the scenario recently disclosed by an advanced calculation able to capture many-body electronic correlations9).



rate research

Read More

Loubeyre, Occelli, and Dumas (LOD) [1] claim to have produced metallic hydrogen (MH) at a pressure of 425 GPa, without the necessary supporting evidence of an insulator to metal transition. The paper is much ado about nothing. Most of the results have been reported earlier. Zha, Liu, and Hemley [2] studied hydrogen at low temperature up to 360 GPa in 2012; they reported absorption studies up to 0.1eV. Eremets et al [3] studied dense hydrogen up to 480 GPa using standard bevel diamonds. They reported darkening of the sample and electrical conductivity in which they reported semi-metallic behavior around 440 GPa. In 2016 Dias, Noked, and Silvera [4] reported hydrogen was opaque at 420 GPa. In 2017 Dias and Silvera observed atomic metallic hydrogen at 495 GPa in the temperature range 5.5-83 K [5].
The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T=0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition accompanied by changes in transmittance and reflectance characteristic of a metal. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through the AFM to FM phase transition the nucleation of the FM phase occurs at many independent nucleation sites with random domain orientation. The domains subsequently align to form the final FM domain structure. We observe no pinning of the FM domain structure.
We have studied solid hydrogen under pressure at low temperatures. With increasing pressure we observe changes in the sample, going from transparent, to black, to a reflective metal, the latter studied at a pressure of 495 GPa. We have measured the reflectance as a function of wavelength in the visible spectrum finding values as high as 0.90 from the metallic hydrogen. We have fit the reflectance using a Drude free electron model to determine the plasma frequency of 30.1 eV at T= 5.5 K, with a corresponding electron carrier density of 6.7x1023 particles/cm3, consistent with theoretical estimates. The properties are those of a metal. Solid metallic hydrogen has been produced in the laboratory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا