Do you want to publish a course? Click here

Prompt Neutron Multiplicity Distributions Inferred from $gamma$-ray and Fission Fragment Energy Measurements

176   0   0.0 ( 0 )
 Added by Amy Lovell
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We propose a novel method to extract the prompt neutron multiplicity distribution, $P( u)$, in fission reactions based on correlations between prompt neutrons, $gamma$ rays, and fragment kinetic energy arising from energy conservation. In this approach, only event-by-event measurements of the total $gamma$-ray energy released as a function of the total kinetic energy (TKE) of the fission fragments are performed, and no neutron detection is required. Using the $texttt{CGMF}$ fission event generator, we illustrate the method and explore the accuracy of extracting the neutron multiplicity distribution when taking into account the energy resolution and calibration of the energy measurements. We find that a TKE resolution of under 2 MeV produces reasonably accurate results, independent of typical $gamma$-ray energy measurement resolution.



rate research

Read More

252 - I. Stetcu , A.E. Lovell , P. Talou 2021
We investigate the angular momentum removal from fission fragments (FFs) through neutron and $gamma$-ray emission, where we find that about half the neutrons are emitted with angular momenta $ge 1.5hbar$ and that the change in angular momentum after the emission of neutrons and statistical $gamma$ rays is significant, contradicting usual assumptions. Per fission event, in our simulations, the neutron and statistical $gamma$-ray emissions change the spin of the fragment by 3.5 -- 5~$hbar$, with a large standard deviation comparable to the average value. Such wide angular momentum removal distributions can hide any underlying correlations in the fission fragment initial spin values. Within our model, we reproduce data on spin measurements from discrete transitions after neutron emissions, especially in the case of light FFs. The agreement further improves for the heavy fragments if one removes from the analysis the events that would produce isomeric states. Finally, we show that while in our model the initial FF spins do not follow a saw-tooth like behavior observed in recent measurements, the average FF spin computed after neutron and statistical $gamma$ emissions exhibits a shape that resembles a saw tooth. This suggests that the average FF spin measured after statistical emissions is not necessarily connected with the scission mechanism as previously implied.
314 - A.E. Lovell , P. Talou , I. Stetcu 2020
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission of the prompt neutrons, preferential directions of the emission of the fission fragments with respect to the beam axis due to the population of particular transition states at the fission barrier, and forward-peaked angular distributions of pre-equilibrium neutrons which are emitted before the formation of a compound nucleus. In addition, there are several potential sources of angular anisotropies that are more difficult to disentangle: the angular distributions of prompt neutrons from fully accelerated fragments or from scission neutrons, and the emission of neutrons from fission fragments that are not fully accelerated. In this work, we study the effects of the first group of anisotropy sources, particularly exploring the correlations between the fission fragment anisotropy and the resulting neutron anisotropy. While kinematic effects were already accounted for in our Hauser-Feshbach Monte Carlo code, $mathtt{CGMF}$, anisotropic angular distributions for the fission fragments and pre-equilibrium neutrons resulting from neutron-induced fission on $^{233,234,235,238}$U, $^{239,241}$Pu, and $^{237}$Np have been introduced for the first time. The effects of these sources of anisotropy are examined over a range of incident neutron energies, from thermal to 20 MeV, and compared to experimental data from the Chi-Nu liquid scintillator array. The anisotropy of the fission fragments is reflected in the anisotropy of the prompt neutrons, especially as the outgoing energy of the prompt neutrons increases, allowing for an extraction of the fission fragment anisotropy to be made from a measurement of the neutrons.
447 - P. Talou , T. Kawano , I. Stetcu 2016
The emission of prompt fission $gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $beta$-decay, is analyzed. The time evolution of the average total $gamma$-ray energy, average total $gamma$-ray multiplicity, and fragment-specific $gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $gamma$ rays are predicted to be emitted between 10 nsec and 5 $mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{rm th},f)$ reactions, and up to 3% in the case of $^{252}$Cf spontaneous fission. The cumulative average total $gamma$-ray energy increases by 2 to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential. A standard flooding technique has been used to determine the barrier heights. It was shown the Fourier shape parametrization containing only three deformation parameters reproduces well the nuclear shapes of nuclei on their way to fission. In addition, the non-axial degree of freedom is taken into account to describe better the form of nuclei around the ground state and in the saddles region. Apart from the symmetric fission valley, a new very asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of considered nuclei are obtained by solving the 3D Langevin equations.
115 - J. Randrup , P. Moller , 2011
Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment mass distributions that are in remarkable agreement with experimental data. Within the framework of the Smoluchowski equation of motion, which is appropriate for highly dissipative evolutions, we discuss the physical justification for that treatment and investigate the sensitivity of the resulting mass yields to a variety of model ingredients, including in particular the dimensionality and discretization of the shape space and the structure of the dissipation tensor. The mass yields are found to be relatively robust, suggesting that the simple random walk presents a useful calculational tool. Quantitatively refined results can be obtained by including physically plausible forms of the dissipation, which amounts to simulating the Brownian shape motion in an anisotropic medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا