The $beta$ decay of the isomeric and ground state of $^{50}$Sc to the semi-magic nucleus $^{50}_{22}$Ti$_{28}$ has been studied using a $^{50}$Ca beam delivered to the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility. $beta$-decay branching ratios are reported to 16 excited states with a total of 38 $gamma$-ray transitions linking them. These new data significantly expands the information available over previous studies. Relative intensities are measured to less than 0.001$%$ that of the strongest transition with the majority of $gamma$-ray transitions observed here in $beta$ decay for the first time. The data are compared to shell-model calculations utilizing both phenomenologically-derived interactions employed in the ${it pf}$ shell as well as a state-of-the-art, ${it ab~initio}$ based interaction built in the valence-space in-medium similarity renormalization group framework.
The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in $^{50}$Sc following the $beta$-decay of $^{50}$Ca. Branching ratios were determined from the measured $gamma$-ray intensities, and angular correlations of $gamma$ rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an $M3$ transition with a $B(M3)$ strength of 13.6(7),W.u. has been confirmed. We compare with the first {it ab initio} calculations of $B(M3$) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and $M3$ operator. The experimental data are well reproduced for isoscalar $M3$ transitions when using bare $g$-factors, but the strength of isovector $M3$ transitions are found to be underestimated by an order of magnitude.
Mass measurements of $^{49,50}$Sc, $^{70}$As, $^{73}$Br and $^{196}$Hg nuclides produced at CERNs radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.
A $^{52}$Cr$(p,t)$$^{50}$Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in $^{50}$Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited $0^+$ state was found. As a result, the $0^+_2$ state is reassigned at an excitation energy of $E_x=3895.0(5)$ keV in $^{50}$Cr. This reassignment directly impacts direct searches for a non-analogue Fermi $beta^+$ decay branch in $^{50}$Mn. These results also show better systematic agreement with the theoretical predictions for the $0^+$ state spectrum in $^{50}$Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to $ab$-$initio$ shell-model predictions using the IM-SRG formalism based on $NN$ and $3N$ forces from chiral-EFT in the $pf$-shell for the first time.
We report on the first in-beam $gamma$-ray spectroscopy of the proton-dripline nucleus $^{40}$Sc using two-nucleon pickup onto an intermediate-energy rare-isotope beam of $^{38}$Ca. The $^{9}$Be($^{38}$Ca,$^{40}$Sc$+gamma$)X reaction at 60.9 MeV/nucleon mid-target energy selectively populates states in $^{40}$Sc for which the transferred proton and neutron couple to high orbital angular momentum. In turn, due to angular-momentum selection rules in proton emission and the nuclear structure and energetics of $^{39}$Ca, such states in $^{40}$Sc then exhibit $gamma$-decay branches although they are well above the proton separation energy. This work uniquely complements results from particle spectroscopy following charge-exchange reactions on $^{40}$Ca as well as $^{40}$Ti EC/$beta^+$ decay which both display very different selectivities. The population and $gamma$-ray decay of the previously known first $(5^-)$ state at 892 keV and the observation of a new level at 2744 keV are discussed in comparison to the mirror nucleus and shell-model calculations. On the experimental side, this work shows that high-resolution in-beam $gamma$-ray spectroscopy is possible with new generation Ge arrays for reactions induced by rare-isotope beams on the level of a few $mu$b of cross section.
A measurement of the $^{50}$Ti($d$,$p$)$^{51}$Ti reaction at 16 MeV was performed using a Super Enge Split Pole Spectrograph to measure the magnitude of the $N=32$ subshell gap in Ti. Seven states were observed that had not been observed in previous ($d$,$p$) measurements, and the textit{L} transfer values for six previously measured states were either changed or measured for the first time. The results were used to determine single neutron energies for the $p_{3/2}$, $p_{1/2}$ and $f_{5/2}$ orbitals. The resulting single neutron energies in $^{51}$Ti confirm the existence of the $N=32$ gap in Ti. These single neutron energies and those from previous measurements in $^{49}$Ca, $^{53}$Cr and $^{55}$Fe are compared to values from a covariant density functional theory calculation.