Do you want to publish a course? Click here

A Search for $0^+$ States in $^{50}$Cr: Implications for the Superallowed $beta$-decay of $^{50}$Mn

122   0   0.0 ( 0 )
 Added by Kyle Leach G
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

A $^{52}$Cr$(p,t)$$^{50}$Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in $^{50}$Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited $0^+$ state was found. As a result, the $0^+_2$ state is reassigned at an excitation energy of $E_x=3895.0(5)$ keV in $^{50}$Cr. This reassignment directly impacts direct searches for a non-analogue Fermi $beta^+$ decay branch in $^{50}$Mn. These results also show better systematic agreement with the theoretical predictions for the $0^+$ state spectrum in $^{50}$Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to $ab$-$initio$ shell-model predictions using the IM-SRG formalism based on $NN$ and $3N$ forces from chiral-EFT in the $pf$-shell for the first time.

rate research

Read More

97 - H. Pai , T. Beck , J. Beller 2016
The low-lying $M1$-strength of the open-shell nucleus $^{50}$Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV, using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity $gamma$-ray Source (HI$gamma$S) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen $1^{+}$ states have been observed between 3.6 and 9.7 MeV. Following our analysis, the lowest $1^{+}$ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme Quasiparticle Random-Phase-Approximation method and the Large-Scale Shell Model justify our conclusions. The calculated distributions of the orbital current for the lowest $1^{+}$-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the $fp$-shell.
The $beta$ decay of the isomeric and ground state of $^{50}$Sc to the semi-magic nucleus $^{50}_{22}$Ti$_{28}$ has been studied using a $^{50}$Ca beam delivered to the GRIFFIN $gamma$-ray spectrometer at the TRIUMF-ISAC facility. $beta$-decay branching ratios are reported to 16 excited states with a total of 38 $gamma$-ray transitions linking them. These new data significantly expands the information available over previous studies. Relative intensities are measured to less than 0.001$%$ that of the strongest transition with the majority of $gamma$-ray transitions observed here in $beta$ decay for the first time. The data are compared to shell-model calculations utilizing both phenomenologically-derived interactions employed in the ${it pf}$ shell as well as a state-of-the-art, ${it ab~initio}$ based interaction built in the valence-space in-medium similarity renormalization group framework.
A new search for the decay modes of the 4-fold forbidden non-unique decay of $^{50}$V has been performed at the Gran Sasso Underground Laboratory (LNGS). In total an exposure of 197 kg $times$ d has been accumulated. The half-life for the electron capture into the first excited state of $^{50}$Ti has been measured with the highest precision to date as $2.67_{-0.18}^{+0.16} times 10^{17}$ yr (68% C.I.) in which systematics uncertainties dominate. The search for the $beta$-decay into the first excited state of $^{50}$Cr resulted in a lower limit of ${1.9} times 10^{19}$ yr (90% C.I.), which is an improvement of almost one order of magnitude compared to existing results. The sensitivity of the new measurement is now in the region of theoretical predictions.
A high-precision branching ratio measurement for the superallowed Fermi $beta^{+}$ emitter $^{62}$Ga was performed with the Gamma-Ray Infrastructure for Fundamental Investigations of Nuclei (GRIFFIN) spectrometer at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. The high efficiency of the GRIFFIN spectrometer allowed 63 $gamma$-ray transitions, with intensities down to $approx$1 part per million (ppm) per $^{62}$Ga $beta^{+}$ decay, to be placed in the level scheme of the daughter nucleus $^{62}$Zn, establishing the superallowed $beta$ branching ratio for $^{62}$Ga decay to be 99.8577$^{+0.0023}_{-0.0029}%$, a factor of 4 more precise than the previous world average. For several cascades, $gamma-gamma$ angular correlation measurements were performed to assign spins and/or determine the mixing ratios of transitions. In particular, the spin of the 2.342 MeV excited state in the daughter nucleus $^{62}$Zn was definitively assigned as $J = 0$. This assignment resolves a discrepancy between previous measurements and has important implications for the isospin symmetry breaking correction, $delta_{C1}$, in $^{62}$Ga superallowed Fermi $beta$ decay.
162 - J.C. Hardy 2005
A recent Penning-trap measurement of the masses of 46V and 46Ti leads to a Qec value that disagrees significantly with the previously accepted value, and destroys overall consistency among the nine most precisely characterized T=1 superallowed beta emitters. This raises the possibility of a systematic discrepancy between Penning-trap measurements and the reaction-based measurements upon which the Qec values depended in the past. We carefully re-analyze (n,gamma) and (p,gamma) reaction measurements in the 24 leq A leq 28 mass region, and compare the results to very precise Penning-trap measurements of the stable nuclei 24Mg, 26Mg and 28Si. We thus determine upper limits to possible systematic effects in the reaction results, and go on to establish limits for the mass of radioactive 26Al, to which future on-line Penning-trap measurements can be compared. We stress the urgency of identifying or ruling-out possible systematic effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا