Do you want to publish a course? Click here

Shared-Private Bilingual Word Embeddings for Neural Machine Translation

135   0   0.0 ( 0 )
 Added by Xuebo Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Word embedding is central to neural machine translation (NMT), which has attracted intensive research interest in recent years. In NMT, the source embedding plays the role of the entrance while the target embedding acts as the terminal. These layers occupy most of the model parameters for representation learning. Furthermore, they indirectly interface via a soft-attention mechanism, which makes them comparatively isolated. In this paper, we propose shared-private bilingual word embeddings, which give a closer relationship between the source and target embeddings, and which also reduce the number of model parameters. For similar source and target words, their embeddings tend to share a part of the features and they cooperatively learn these common representation units. Experiments on 5 language pairs belonging to 6 different language families and written in 5 different alphabets demonstrate that the proposed model provides a significant performance boost over the strong baselines with dramatically fewer model parameters.



rate research

Read More

Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To alleviate the need for expensive parallel corpora by TLM, in this work, we incorporate the translation information from dictionaries into the pretraining process and propose a novel Bilingual Dictionary-based Language Model (BDLM). We evaluate our BDLM in Chinese, English, and Romanian. For Chinese-English, we obtained a 55.0 BLEU on WMT-News19 (Tiedemann, 2012) and a 24.3 BLEU on WMT20 news-commentary, outperforming the Vanilla Transformer (Vaswani et al., 2017) by more than 8.4 BLEU and 2.3 BLEU, respectively. According to our results, the BDLM also has advantages on convergence speed and predicting rare words. The increase in BLEU for WMT16 Romanian-English also shows its effectiveness in low-resources language translation.
Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training algorithm over monolingual corpora in two languages. Our model achieves state-of-the-art performance on bilingual lexicon induction task exceeding models using large bilingual corpora, and competitive results on the monolingual word similarity and cross-lingual document classification task.
108 - Shuoyang Ding , Kevin Duh 2018
Using pre-trained word embeddings as input layer is a common practice in many natural language processing (NLP) tasks, but it is largely neglected for neural machine translation (NMT). In this paper, we conducted a systematic analysis on the effect of using pre-trained source-side monolingual word embedding in NMT. We compared several strategies, such as fixing or updating the embeddings during NMT training on varying amounts of data, and we also proposed a novel strategy called dual-embedding that blends the fixing and updating strategies. Our results suggest that pre-trained embeddings can be helpful if properly incorporated into NMT, especially when parallel data is limited or additional in-domain monolingual data is readily available.
Recently, token-level adaptive training has achieved promising improvement in machine translation, where the cross-entropy loss function is adjusted by assigning different training weights to different tokens, in order to alleviate the token imbalance problem. However, previous approaches only use static word frequency information in the target language without considering the source language, which is insufficient for bilingual tasks like machine translation. In this paper, we propose a novel bilingual mutual information (BMI) based adaptive objective, which measures the learning difficulty for each target token from the perspective of bilingualism, and assigns an adaptive weight accordingly to improve token-level adaptive training. This method assigns larger training weights to tokens with higher BMI, so that easy tokens are updated with coarse granularity while difficult tokens are updated with fine granularity. Experimental results on WMT14 English-to-German and WMT19 Chinese-to-English demonstrate the superiority of our approach compared with the Transformer baseline and previous token-level adaptive training approaches. Further analyses confirm that our method can improve the lexical diversity.
194 - Jan Niehues 2021
While recent advances in deep learning led to significant improvements in machine translation, neural machine translation is often still not able to continuously adapt to the environment. For humans, as well as for machine translation, bilingual dictionaries are a promising knowledge source to continuously integrate new knowledge. However, their exploitation poses several challenges: The system needs to be able to perform one-shot learning as well as model the morphology of source and target language. In this work, we proposed an evaluation framework to assess the ability of neural machine translation to continuously learn new phrases. We integrate one-shot learning methods for neural machine translation with different word representations and show that it is important to address both in order to successfully make use of bilingual dictionaries. By addressing both challenges we are able to improve the ability to translate new, rare words and phrases from 30% to up to 70%. The correct lemma is even generated by more than 90%.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا