No Arabic abstract
The orbital angular momentum (OAM) sorter is a new electron optical device for measuring an electron s OAM. It is based on two phase elements, which are referred to as the unwrapper and corrector and are placed in Fourier conjugate planes in an electron microscope. The most convenient implementation of this concept is based on the use of electrostatic phase elements, such as a charged needle as the unwrapper and a set of electrodes with alternating charges as the corrector. Here, we use simulations to assess the role of imperfections in such a device, in comparison to an ideal sorter. We show that the finite length of the needle and the boundary conditions introduce astigmatism, which leads to detrimental cross-talk in the OAM spectrum. We demonstrate that an improved setup comprising three charged needles can be used to compensate for this aberration, allowing measurements with a level of cross-talk in the OAM spectrum that is comparable to the ideal case.
We report the first experimental demonstration of an electrostatic electron orbital angular momentum (OAM) sorter, which can be used to analyze the OAM states of electrons in a transmission electron microscope. We verify the sorter functionality for several electron beams possessing different superpositions of OAM states, and use it to record the electron beams OAM spectra. Our current electrostatic OAM sorter has an OAM resolution of 2 in the units of h/bar - the reduced Planck constant. It is expected to increase the OAM resolution of the sorter to the optimal resolution of 1 in the future via fine control of the sorting phase elements.
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamental quantum mechanics. Although there have been many methods for sorting quantum states with different OAM values, the nondestructive and efficient sorter of high-dimensional OAM remains a fundamental challenge. Here, we propose a scalable OAM sorter which can categorize different OAM states simultaneously, meanwhile, preserving both OAM and spin angular momentum. Fundamental elements of the sorter are composed of symmetric multiport beam splitters (BSs) and Dove prisms with cascading structure, which in principle can be flexibly and effectively combined to sort arbitrarily high-dimensional OAM photons. The scalable structures proposed here greatly reduce the number of BSs required for sorting high-dimensional OAMstates. In view of the nondestructive and extensible features, the sorters can be used as fundamental devices not only for high-dimensional quantum information processing, but also for traditional optics.
Recently, a new device to measure the Orbital Angular Momentum (OAM) electronic spectrum after elastic/inelastic scattering in a transmission electron microscope has been introduced. We modified the theoretical framework needed to describe conventional low loss electron energy loss spectroscopy (EELS) experiments in transmission electron microscopes (TEM) to study surface plasmons in metallic nanostructures, to allow for an OAM post selection and devise new experiments for the analysis of these excitations in nanostructures. We found that unprecedented information on the symmetries and on the chirality of the plasmonic modes can be retrieved even with limited OAM and energy resolutions.
Phase manipulation is essential to quantum information processing, for which the orbital angular momentum (OAM) of photon is a promising high-dimensional resource. Dove prism (DP) is one of the most important element to realize the nondestructive phase manipulation of OAM photons. DP usually changes the polarization of light and thus increases the manipulation error for a spin-OAM hybrid state. DP in a Sagnac interferometer also introduces a mode-dependent global phase to the OAM mode. In this work, we implemented a high-dimensional controlled-phase manipulation module (PMM), which can compensate the mode-dependent global phase and thus preserve the phase in the spin-OAM hybrid superposition state. The PMM is stable for free running and is suitable to realize the high-dimensional controlled-phase gate for spin-OAM hybrid states. Considering the Sagnac-based structure, the PMM is also suitable for classical communication with spin-OAM hybrid light field.
The difference between the quark orbital angular momentum (OAM) defined in light-cone gauge (Jaffe-Manohar) compared to defined using a local manifestly gauge invariant operator (Ji) is interpreted in terms of the change in quark OAM as the quark leaves the target in a DIS experiment.