Do you want to publish a course? Click here

High electric charges in M-theory from quiver varieties

94   0   0.0 ( 0 )
 Added by Marco Fazzi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

M-theory on a Calabi-Yau threefold admitting a small resolution gives rise to an Abelian vector multiplet and a charged hypermultiplet. We introduce into this picture a procedure to construct threefolds that naturally host matter with electric charges up to six. These are built as families of Du Val ADE surfaces (or ALE spaces), and the possible charges correspond to the Dynkin labels of the adjoint of the ADE algebra. In the case of charge two, we give a new derivation of the answer originally obtained by Curto and Morrison, and explicitly relate this construction to the Morrison-Park geometry. We also give a procedure for constructing higher-charge cases, which can often be applied to F-theory models.



rate research

Read More

147 - Nadav Drukker 2020
Three dimensional supersymmetric field theories have large moduli spaces of circular Wilson loops preserving a fixed set of supercharges. We simplify previous constructions of such Wilson loops and amend and clarify their classification. For a generic quiver gauge theory we identify the moduli space as a quotient of $C^m$ for some $m$ by an appropriate symmetry group. These spaces are quiver varieties associated to a cover of the original quiver or a subquiver thereof. This moduli space is generically singular and at the singularities there are large degeneracies of operators which seem different, but whose expectation values and correlation functions with all other gauge invariant operators are identical. The formulation presented here, where the Wilson loops are on $S^3$ or squashed $S^3_b$ also allows to directly implement a localization procedure on these observables, which previously required an indirect cohomological equivalence argument.
295 - Tamas Hausel 2010
We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a a certain weight in the corresponding Kac-Moody algebra, which was conjectured by Kac in 1982.
Quivers, gauge theories and singular geometries are of great interest in both mathematics and physics. In this note, we collect a few open questions which have arisen in various recent works at the intersection between gauge theories, representation theory, and algebraic geometry. The questions originate from the study of supersymmetric gauge theories in different dimensions with different supersymmetries. Although these constitute merely the tip of a vast iceberg, we hope this guide can give a hint of possible directions in future research. This is an invited contribution to a special volume of Proyecciones, E. Gasparim, Ed., and it is the hope that the questions are specific enough for research projects aimed at PhD students.
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on noncommutative spaces R^{2n}_theta x G/H which are manifestly G-symmetric. Given a G-representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant U(k) bundle with a G-equivariant connection over R^{2n}_theta x G/H. The U(k) Donaldson-Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular quiver gauge theory on R^{2n}_theta. Seiberg-Witten monopole equations are particular examples. The noncommutative BPS configurations are formulated with partial isometries, which are obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as D0-branes inside a space-filling brane-antibrane system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا