Do you want to publish a course? Click here

Unbiased estimators for the variance of MMD estimators

67   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The maximum mean discrepancy (MMD) is a kernel-based distance between probability distributions useful in many applications (Gretton et al. 2012), bearing a simple estimator with pleasing computational and statistical properties. Being able to efficiently estimate the variance of this estimator is very helpful to various problems in two-sample testing. Towards this end, Bounliphone et al. (2016) used the theory of U-statistics to derive estimators for the variance of an MMD estimator, and differences between two such estimators. Their estimator, however, drops lower-order terms, and is unnecessarily biased. We show in this note - extending and correcting work of Sutherland et al. (2017) - that we can find a truly unbiased estimator for the actual variance of both the squared MMD estimator and the difference of two correlated squared MMD estimators, at essentially no additional computational cost.



rate research

Read More

We propose a simple and general variant of the standard reparameterized gradient estimator for the variational evidence lower bound. Specifically, we remove a part of the total derivative with respect to the variational parameters that corresponds to the score function. Removing this term produces an unbiased gradient estimator whose variance approaches zero as the approximate posterior approaches the exact posterior. We analyze the behavior of this gradient estimator theoretically and empirically, and generalize it to more complex variational distributions such as mixtures and importance-weighted posteriors.
Efficient low-variance gradient estimation enabled by the reparameterization trick (RT) has been essential to the success of variational autoencoders. Doubly-reparameterized gradients (DReGs) improve on the RT for multi-sample variational bounds by applying reparameterization a second time for an additional reduction in variance. Here, we develop two generalizations of the DReGs estimator and show that they can be used to train conditional and hierarchical VAEs on image modelling tasks more effectively. First, we extend the estimator to hierarchical models with several stochastic layers by showing how to treat additional score function terms due to the hierarchical variational posterior. We then generalize DReGs to score functions of arbitrary distributions instead of just those of the sampling distribution, which makes the estimator applicable to the parameters of the prior in addition to those of the posterior.
Several statistical models are given in the form of unnormalized densities, and calculation of the normalization constant is intractable. We propose estimation methods for such unnormalized models with missing data. The key concept is to combine imputation techniques with estimators for unnormalized models including noise contrastive estimation and score matching. In addition, we derive asymptotic distributions of the proposed estimators and construct confidence intervals. Simulation results with truncated Gaussian graphical models and the application to real data of wind direction reveal that the proposed methods effectively enable statistical inference with unnormalized models from missing data.
68 - Zejian Liu , Meng Li 2020
We study the problem of estimating the derivatives of the regression function, which has a wide range of applications as a key nonparametric functional of unknown functions. Standard analysis may be tailored to specific derivative orders, and parameter tuning remains a daunting challenge particularly for high-order derivatives. In this article, we propose a simple plug-in kernel ridge regression (KRR) estimator in nonparametric regression with random design that is broadly applicable for multi-dimensional support and arbitrary mixed-partial derivatives. We provide a non-asymptotic analysis to study the behavior of the proposed estimator, leading to two error bounds for a general class of kernels under the strong $L_infty$ norm. In a concrete example specialized to kernels with polynomially decaying eigenvalues, the proposed estimator recovers the minimax optimal rate up to a logarithmic factor for estimating derivatives of functions in Holder class. Interestingly, the proposed estimator achieves the optimal rate of convergence with the same choice of tuning parameter for any order of derivatives. Hence, the proposed estimator enjoys a remarkable textit{plug-in property} for derivatives in that it automatically adapts to the order of derivatives to be estimated, enabling easy tuning in practice. Our simulation studies show favorable finite sample performance of the proposed method relative to several existing methods.
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا