Do you want to publish a course? Click here

Strong Consistency of Multivariate Spectral Variance Estimators

102   0   0.0 ( 0 )
 Added by Dootika Vats
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.



rate research

Read More

Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic normal distribution. We consider spectral and batch means methods for estimating this variance. In particular, we establish conditions which guarantee that these estimators are strongly consistent as the simulation effort increases. In addition, for the batch means and overlapping batch means methods we establish conditions ensuring consistency in the mean-square sense which in turn allows us to calculate the optimal batch size up to a constant of proportionality. Finally, we examine the empirical finite-sample properties of spectral variance and batch means estimators and provide recommendations for practitioners.
140 - Salim Bouzebda 2011
We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. We consider two kernel-type estimators of Shannons entropy. As a consequence, an asymptotic 100% confidence interval of entropy is provided.
68 - Lea Longepierre 2019
We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal evolution is modeled through a hidden Markov chain on the nodes memberships. We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on the rates of convergence of these estimators. We also explore the particular case where the number of time steps is fixed and connectivity parameters are allowed to vary.
We consider noisy non-synchronous discrete observations of a continuous semimartingale with random volatility. Functional stable central limit theorems are established under high-frequency asymptotics in three setups: one-dimensional for the spectral estimator of integrated volatility, from two-dimensional asynchronous observations for a bivariate spectral covolatility estimator and multivariate for a local method of moments. The results demonstrate that local adaptivity and smoothing noise dilution in the Fourier domain facilitate substantial efficiency gains compared to previous approaches. In particular, the derived asymptotic variances coincide with the benchmarks of semiparametric Cramer-Rao lower bounds and the considered estimators are thus asymptotically efficient in idealized sub-experiments. Feasible central limit theorems allowing for confidence are provided.
118 - Hisayuki Hara 2007
In this article we provide some nonnegative and positive estimators of the mean squared errors(MSEs) for shrinkage estimators of multivariate normal means. Proposed estimators are shown to improve on the uniformly minimum variance unbiased estimator(UMVUE) under a quadratic loss criterion. A similar improvement is also obtained for the estimators of the MSE matrices for shrinkage estimators. We also apply the proposed estimators of the MSE matrix to form confidence sets centered at shrinkage estimators and show their usefulness through numerical experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا