Do you want to publish a course? Click here

On localized and coherent states on some new fuzzy spheres

137   0   0.0 ( 0 )
 Added by Francesco Pisacane
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the $O(D)$-invariant square space and angular momentum uncertainties $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$ in the ambient Euclidean space $mathbb{R}^D$. We also determine general bounds (e.g. uncertainty relations from commutation relations) for $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$, and partly investigate which SCS may saturate these bounds. In particular, we determine $O(D)$-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e. points) of $S^d$. We compare the results with their analogs on commutative $S^d$. We also show that on $S^2_Lambda$ our optimally localized states are better localized than those on the Madore-Hoppe fuzzy sphere with the same cutoff $Lambda$.



rate research

Read More

We study the eigenvalue equation for the Cartesian coordinates observables $x_i$ on the fully $O(2)$-covariant fuzzy circle ${S^1_Lambda}_{Lambdainmathbb{N}}$ ($i=1,2$) and on the fully $O(3)$-covariant fuzzy 2-sphere ${S^2_Lambda}_{Lambdainmathbb{N}}$ ($i=1,2,3$) introduced in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451]. We show that the spectrum and eigenvectors of $x_i$ fulfill a number of properties which are expected for $x_i$ to approximate well the corresponding coordinate operator of a quantum particle forced to stay on the unit sphere.
We briefly report our recent construction of new fuzzy spheres of dimensions d=1,2 covariant under the full orthogonal group O(D), D=d+1. They are built by imposing a suitable energy cutoff on a quantum particle in D dimensions subject to a confining potential well V(r) with a very sharp minimum on the sphere of radius r=1; furthermore, the cutoff and the depth of the well depend on (and diverge with) a natural number L. The commutator of the coordinates depends only on the angular momentum, as in Snyder noncommutative spaces. When L diverges, the Hilbert space dimension diverges, too; S^d_L converges to S^d, and we recover ordinary quantum mechanics on S^d. These models might be useful in quantum field theory, quantum gravity or condensed matter physics.
We revise the unireps. of $U(2,2)$ describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity $h$ of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (excitons) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points $Z$ ($2times 2$ complex matrices) on the Cartan-Bergman domain $mathbb D_4=U(2,2)/U(2)^2$, and constitute a generalized (matrix) version of Perelomov $U(1,1)$ coherent states labeled by points $z$ on the unit disk $mathbb D_1=U(1,1)/U(1)^2$. Firstly we follow a geometric approach to the construction of CS, orthonormal basis, $U(2,2)$ generators and their matrix elements and symbols in the reproducing kernel Hilbert space $mathcal H_lambda(mathbb D_4)$ of analytic square-integrable holomorphic functions on $mathbb D_4$, which carries a unitary irreducible representation of $U(2,2)$ with index $lambdainmathbb N$ (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the $U(2,2)$ Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index $lambda$ is related to the number $2(lambda-2)$ of unpaired quanta and to the helicity $h=(lambda-2)/2$ of each massless particle forming the massive compound.
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the $su(2)$ algebra. This has been computed for both the discrete, as well as for the Perelemovs $SU(2)$ coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by $ninmathbb{Z}/2$.
149 - Andrzej Okninski 2013
We study several formulations of zero-mass relativistic equations, stressing similarities between different frameworks. It is shown that all these massless wave equations have fermionic as well as bosonic solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا