Do you want to publish a course? Click here

The $x_i$-eigenvalue problem on some new fuzzy spheres

66   0   0.0 ( 0 )
 Added by Francesco Pisacane
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the eigenvalue equation for the Cartesian coordinates observables $x_i$ on the fully $O(2)$-covariant fuzzy circle ${S^1_Lambda}_{Lambdainmathbb{N}}$ ($i=1,2$) and on the fully $O(3)$-covariant fuzzy 2-sphere ${S^2_Lambda}_{Lambdainmathbb{N}}$ ($i=1,2,3$) introduced in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451]. We show that the spectrum and eigenvectors of $x_i$ fulfill a number of properties which are expected for $x_i$ to approximate well the corresponding coordinate operator of a quantum particle forced to stay on the unit sphere.



rate research

Read More

We construct various systems of coherent states (SCS) on the $O(D)$-equivariant fuzzy spheres $S^d_Lambda$ ($d=1,2$, $D=d!+!1$) constructed in [G. Fiore, F. Pisacane, J. Geom. Phys. 132 (2018), 423-451] and study their localizations in configuration space as well as angular momentum space. These localizations are best expressed through the $O(D)$-invariant square space and angular momentum uncertainties $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$ in the ambient Euclidean space $mathbb{R}^D$. We also determine general bounds (e.g. uncertainty relations from commutation relations) for $(Deltaboldsymbol{x})^2,(Deltaboldsymbol{L})^2$, and partly investigate which SCS may saturate these bounds. In particular, we determine $O(D)$-equivariant systems of optimally localized coherent states, which are the closest quantum states to the classical states (i.e. points) of $S^d$. We compare the results with their analogs on commutative $S^d$. We also show that on $S^2_Lambda$ our optimally localized states are better localized than those on the Madore-Hoppe fuzzy sphere with the same cutoff $Lambda$.
We briefly report our recent construction of new fuzzy spheres of dimensions d=1,2 covariant under the full orthogonal group O(D), D=d+1. They are built by imposing a suitable energy cutoff on a quantum particle in D dimensions subject to a confining potential well V(r) with a very sharp minimum on the sphere of radius r=1; furthermore, the cutoff and the depth of the well depend on (and diverge with) a natural number L. The commutator of the coordinates depends only on the angular momentum, as in Snyder noncommutative spaces. When L diverges, the Hilbert space dimension diverges, too; S^d_L converges to S^d, and we recover ordinary quantum mechanics on S^d. These models might be useful in quantum field theory, quantum gravity or condensed matter physics.
An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the $su(2)$ algebra. This has been computed for both the discrete, as well as for the Perelemovs $SU(2)$ coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by $ninmathbb{Z}/2$.
118 - S. De Leo 2002
We discuss the (right) eigenvalue equation for $mathbb{H}$, $mathbb{C}$ and $mathbb{R}$ linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic problem into an {em equivalent} real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics.
150 - Andrzej Okninski 2013
We study several formulations of zero-mass relativistic equations, stressing similarities between different frameworks. It is shown that all these massless wave equations have fermionic as well as bosonic solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا