Do you want to publish a course? Click here

CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

58   0   0.0 ( 0 )
 Added by Jiarui Jin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.



rate research

Read More

In a ride-hailing system, an optimal relocation of vacant vehicles can significantly reduce fleet idling time and balance the supply-demand distribution, enhancing system efficiency and promoting driver satisfaction and retention. Model-free deep reinforcement learning (DRL) has been shown to dynamically learn the relocating policy by actively interacting with the intrinsic dynamics in large-scale ride-hailing systems. However, the issues of sparse reward signals and unbalanced demand and supply distribution place critical barriers in developing effective DRL models. Conventional exploration strategy (e.g., the $epsilon$-greedy) may barely work under such an environment because of dithering in low-demand regions distant from high-revenue regions. This study proposes the deep relocating option policy (DROP) that supervises vehicle agents to escape from oversupply areas and effectively relocate to potentially underserved areas. We propose to learn the Laplacian embedding of a time-expanded relocation graph, as an approximation representation of the system relocation policy. The embedding generates task-agnostic signals, which in combination with task-dependent signals, constitute the pseudo-reward function for generating DROPs. We present a hierarchical learning framework that trains a high-level relocation policy and a set of low-level DROPs. The effectiveness of our approach is demonstrated using a custom-built high-fidelity simulator with real-world trip record data. We report that DROP significantly improves baseline models with 15.7% more hourly revenue and can effectively resolve the dithering issue in low-demand areas.
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day, providing great promises for improving transportation efficiency through the tasks of order dispatching and vehicle repositioning. Existing studies, however, usually consider the two tasks in simplified settings that hardly address the complex interactions between the two, the real-time fluctuations between supply and demand, and the necessary coordinations due to the large-scale nature of the problem. In this paper we propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks. At the center of the framework is a globally shared value function that is updated continuously using online experiences generated from real-time platform transactions. To improve the sample-efficiency and the robustness, we further propose a novel periodic ensemble method combining the fast online learning with a large-scale offline training scheme that leverages the abundant historical driver trajectory data. This allows the proposed framework to adapt quickly to the highly dynamic environment, to generalize robustly to recurrent patterns and to drive implicit coordinations among the population of managed vehicles. Extensive experiments based on real-world datasets show considerably improvements over other recently proposed methods on both tasks. Particularly, V1D3 outperforms the first prize winners of both dispatching and repositioning tracks in the KDD Cup 2020 RL competition, achieving state-of-the-art results on improving both total driver income and user experience related metrics.
195 - Zhengbing He 2020
As a newly-emerging travel mode in the era of mobile internet, ride-hailing that connects passengers with private-car drivers via an online platform has been very popular all over the world. Although it attracts much attention in both practice and theory, the understanding of ride-hailing is still very limited largely because of the lack of related data. For the first time, this paper introduces ride-hailing drivers multi-day trip order data and portrays ride-hailing mobility in Beijing, China, from the regional and drivers perspectives. The analyses from the regional perspective help understand the spatiotemporal flowing of the ride-hailing demand, and those from the drivers perspective characterize the ride-hailing drivers preferences in providing ride-hailing services. A series of findings are obtained, such as the observation of the spatiotemporal rhythm of a city in using ride-hailing services and two categories of ride-hailing drivers in terms of the correlation between the activity space and working time. Those findings contribute to the understanding of ride-hailing activities, the prediction of ride-hailing demand, the modeling of ride-hailing drivers preferences, and the management of ride-hailing services.
As a foreseeable future mode of transport with lower emissions and higher efficiencies, electric vehicles have received worldwide attention. For convenient centralized management, taxis are considered as the fleet with electrification priority. In this work, we focus on the study on electric taxis dispatching, with consideration of picking up customers and recharging, based on real world traffic data of a large number of taxis in Beijing. First, the assumed electric taxi charging stations are located using the K mean method. Second, based on the station locations and the order demands, which are in form of origin-destination pairs and extracted from the trajectory data, a dispatching strategy as well as the simulation framework is developed with consideration of reducing customer waiting time, mitigating electric taxi charging congestion, and balancing order number distribution among electric taxis. The proposed method models the electric taxi charging behaviors temporally discretely from the aspects of charging demands and availability of chargers, and further incorporates a centralized and intelligent fleet dispatching platform, which is capable of handling taxi service requests and arranging electric taxis recharging in real time. The methodology in this paper is readily applicable to dispatching of different types of electric vehicle fleet with similar dataset available. Among the method, we use queueing theory to model the electric vehicle charging station waiting phenomena and include this factor into dispatching platform. Carbon emission is also surveyed and analyzed.
152 - Chao Wang , Yi Hou , 2019
Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but also helps ride-hailing companies and drivers make informed decisions to reduce deadheading vehicle miles traveled, traffic congestion, and energy consumption. In this study, a convolutional neural network (CNN)-based deep learning model is proposed for multi-step ride-hailing demand prediction using the trip request data in Chengdu, China, offered by DiDi Chuxing. The CNN model is capable of accurately predicting the ride-hailing pick-up demand at each 1-km by 1-km zone in the city of Chengdu for every 10 minutes. Compared with another deep learning model based on long short-term memory, the CNN model is 30% faster for the training and predicting process. The proposed model can also be easily extended to make multi-step predictions, which would benefit the on-demand shared autonomous vehicles applications and fleet operators in terms of supply-demand rebalancing. The prediction error attenuation analysis shows that the accuracy stays acceptable as the model predicts more steps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا