No Arabic abstract
Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%.
Deep neural networks have been widely used in many computer vision tasks. However, it is proved that they are susceptible to small, imperceptible perturbations added to the input. Inputs with elaborately designed perturbations that can fool deep learning models are called adversarial examples, and they have drawn great concerns about the safety of deep neural networks. Object detection algorithms are designed to locate and classify objects in images or videos and they are the core of many computer vision tasks, which have great research value and wide applications. In this paper, we focus on adversarial attack on some state-of-the-art object detection models. As a practical alternative, we use adversarial patches for the attack. Two adversarial patch generation algorithms have been proposed: the heatmap-based algorithm and the consensus-based algorithm. The experiment results have shown that the proposed methods are highly effective, transferable and generic. Additionally, we have applied the proposed methods to competition Adversarial Challenge on Object Detection that is organized by Alibaba on the Tianchi platform and won top 7 in 1701 teams. Code is available at: https://github.com/FenHua/DetDak
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbations can completely change the classification results. Their vulnerability has led to a surge of research in this direction. However, most works dedicated to attacking anchor-based object detection models. In this work, we aim to present an effective and efficient algorithm to generate adversarial examples to attack anchor-free object models based on two approaches. First, we conduct category-wise instead of instance-wise attacks on the object detectors. Second, we leverage the high-level semantic information to generate the adversarial examples. Surprisingly, the generated adversarial examples it not only able to effectively attack the targeted anchor-free object detector but also to be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN.
Many recent studies have shown that deep neural models are vulnerable to adversarial samples: images with imperceptible perturbations, for example, can fool image classifiers. In this paper, we present the first type-specific approach to generating adversarial examples for object detection, which entails detecting bounding boxes around multiple objects present in the image and classifying them at the same time, making it a harder task than against image classification. We specifically aim to attack the widely used Faster R-CNN by changing the predicted label for a particular object in an image: where prior work has targeted one specific object (a stop sign), we generalise to arbitrary objects, with the key challenge being the need to change the labels of all bounding boxes for all instances of that object type. To do so, we propose a novel method, named Pick-Object-Attack. Pick-Object-Attack successfully adds perturbations only to bounding boxes for the targeted object, preserving the labels of other detected objects in the image. In terms of perceptibility, the perturbations induced by the method are very small. Furthermore, for the first time, we examine the effect of adversarial attacks on object detection in terms of a downstream task, image captioning; we show that where a method that can modify all object types leads to very obvious changes in captions, the changes from our constrained attack are much less apparent.
Understanding human-object interactions is fundamental in First Person Vision (FPV). Tracking algorithms which follow the objects manipulated by the camera wearer can provide useful cues to effectively model such interactions. Visual tracking solutions available in the computer vision literature have significantly improved their performance in the last years for a large variety of target objects and tracking scenarios. However, despite a few previous attempts to exploit trackers in FPV applications, a methodical analysis of the performance of state-of-the-art trackers in this domain is still missing. In this paper, we fill the gap by presenting the first systematic study of object tracking in FPV. Our study extensively analyses the performance of recent visual trackers and baseline FPV trackers with respect to different aspects and considering a new performance measure. This is achieved through TREK-150, a novel benchmark dataset composed of 150 densely annotated video sequences. Our results show that object tracking in FPV is challenging, which suggests that more research efforts should be devoted to this problem so that tracking could benefit FPV tasks.
In this paper, we demonstrate a physical adversarial patch attack against object detectors, notably the YOLOv3 detector. Unlike previous work on physical object detection attacks, which required the patch to overlap with the objects being misclassified or avoiding detection, we show that a properly designed patch can suppress virtually all the detected objects in the image. That is, we can place the patch anywhere in the image, causing all existing objects in the image to be missed entirely by the detector, even those far away from the patch itself. This in turn opens up new lines of physical attacks against object detection systems, which require no modification of the objects in a scene. A demo of the system can be found at https://youtu.be/WXnQjbZ1e7Y.