No Arabic abstract
Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qu$trits$. Past work with qutrits has demonstrated only constant factor improvements, owing to the $log_2(3)$ binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla--a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation.
We determine the cost of performing Shors algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shors algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shors period finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Clifford gates and single qubit rotations by arbitrary angles. Our constructions use the Walsh-Hadamard spectrum of Boolean functions and build on the work by Schuch and Siewert and Welch et al. We present quantum circuits for the case where the target qubit is in an arbitrary state as well as the special case where the target is in a known state. Additionally, we present constructions that require no auxiliary qubits and constructions that have a rotation depth of 1.
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shors algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer $T$ gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and $T$-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components.
Most research in quantum computing today is performed against simulations of quantum computers rather than true quantum computers. Simulating a quantum computer entails implementing all of the unitary operators corresponding to the quantum gates as tensors. For high numbers of qubits, performing tensor multiplications for these simulations becomes quite expensive, since $N$-qubit gates correspond to $2^{N}$-dimensional tensors. One way to accelerate such a simulation is to use field programmable gate array (FPGA) hardware to efficiently compute the matrix multiplications. Though FPGAs can efficiently perform tensor multiplications, they are memory bound, having relatively small block random access memory. One way to potentially reduce the memory footprint of a quantum computing system is to represent it as a tensor network; tensor networks are a formalism for representing compositions of tensors wherein economical tensor contractions are readily identified. Thus we explore tensor networks as a means to reducing the memory footprint of quantum computing systems and broadly accelerating simulations of such systems.
We propose a probabilistic quantum protocol to realize a nonlinear transformation of qutrit states, which by iterative applications on ensembles can be used to distinguish two types of pure states. The protocol involves single-qutrit and two-qutrit unitary operations as well as post-selection according to the results obtained in intermediate measurements. We utilize the nonlinear transformation in an algorithm to identify a quantum state provided it belongs to an arbitrary known finite set. The algorithm is based on dividing the known set of states into two appropriately designed subsets which can be distinguished by the nonlinear protocol. In most cases this is accompanied by the application of some properly defined physical (unitary) operation on the unknown state. Then, by the application of the nonlinear protocol one can decide which of the two subsets the unknown state belongs to thus reducing the number of possible candidates. By iteratively continuing this procedure until a single possible candidate remains, one can identify the unknown state.