Do you want to publish a course? Click here

GASP XVIII: Star formation quenching due to AGN feedback in the central region of a jellyfish galaxy

180   0   0.0 ( 0 )
 Added by Koshy George
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report evidence for star formation quenching in the central 8.6 kpc region of the jellyfish galaxy JO201 which hosts an active galactic nucleus, while undergoing strong ram pressure stripping. The ultraviolet imaging data of the galaxy disk reveal a region with reduced flux around the center of the galaxy and a horse shoe shaped region with enhanced flux in the outer disk. The characterization of the ionization regions based on emission line diagnostic diagrams shows that the region of reduced flux seen in the ultraviolet is within the AGN-dominated area. The CO J$_{2-1}$ map of the galaxy disk reveals a cavity in the central region. The image of the galaxy disk at redder wavelengths (9050-9250 $overset{lower.5emcirc}{mathrm{A}}$) reveals the presence of a stellar bar. The star formation rate map of the galaxy disk shows that the star formation suppression in the cavity occurred in the last few 10$^8$ yr. We present several lines of evidence supporting the scenario that suppression of star formation in the central region of the disk is most likely due to the feedback from the AGN. The observations reported here make JO201 a unique case of AGN feedback and environmental effects suppressing star formation in a spiral galaxy.



rate research

Read More

We present VLA HI observations of JO206, a prototypical ram-pressure stripped galaxy in the GASP sample. This massive galaxy (M$_{ast} =$ 8.5 $times$ 10$^{10}$ M$_{odot}$) is located at a redshift of $z =$ 0.0513, near the centre of the low-mass galaxy cluster, IIZw108 ($sigma sim575$ km/s). JO206 is characterised by a long tail ($geq$90 kpc) of ionised gas stripped away by ram-pressure. We find a similarly long HI tail in the same direction as the ionised gas tail and measure a total HI mass of $3.2 times 10^{9}$ M$_{odot}$. This is about half the expected HI mass given the stellar mass and surface density of JO206. A total of $1.8 times 10^{9}$ M$_{odot}$ (60%) of the detected HI is in the gas stripped tail. An analysis of the star formation rate shows that the galaxy is forming more stars compared to galaxies with the same stellar and HI mass. On average we find a HI gas depletion time of $sim$0.5 Gyr which is about four times shorter than that of normal spiral galaxies. We performed a spatially resolved analysis of the relation between star formation rate density and gas density in the disc and tail of the galaxy at the resolution of our HI data. The star formation efficiency of the disc is about 10 times higher than that of the tail at fixed HI surface densities. Both the inner and outer parts of JO206 show an enhanced star formation compared to regions of similar HI surface density in field galaxies. The enhanced star formation is due to ram-pressure stripping during the galaxys first infall into the cluster.
Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP) program, we compare the integrated Star Formation Rate- Mass relation (SFR-M_ast) relation of 42 cluster galaxies undergoing ram pressure stripping (stripping galaxies) to that of 32 field and cluster undisturbed galaxies. Theoretical predictions have so far led to contradictory conclusions about whether ram pressure can enhance the star formation in the gas disks and tails or not and until now a statistically significant observed sample of stripping galaxies was lacking. We find that stripping galaxies occupy the upper envelope of the control sample SFR-M_ast relation, showing a systematic enhancement of the SFR at any given mass. The star formation enhancement occurs in the disk (0.2 dex), and additional star formation takes place in the tails. Our results suggest that strong ram pressure stripping events can moderately enhance the star formation also in the disk prior to gas removal.
We present JVLA-C observations of the HI gas in JO204, one of the most striking jellyfish galaxies from the GASP survey. JO204 is a massive galaxy in the low-mass cluster Abell 957 at z=0.04243. The HI map reveals an extended 90 kpc long ram-pressure stripped tail of neutral gas, stretching beyond the 30 kpc long ionized gas tail and pointing away from the cluster center. The HI mass seen in emission is (1.32 $ pm 0.13) times 10^{9} rm M_{odot}$, mostly located in the tail. The northern part of the galaxy disk has retained some HI gas, while the southern part has already been completely stripped and displaced into an extended unilateral tail. Comparing the distribution and kinematics of the neutral and ionized gas in the tail indicates a highly turbulent medium. Moreover, we observe associated HI absorption against the 11 mJy central radio continuum source with an estimated HI absorption column density of 3.2 $times 10^{20}$ cm$^{-2}$. The absorption profile is significantly asymmetric with a wing towards higher velocities. We modelled the HI absorption by assuming that the HI and ionized gas disks have the same kinematics in front of the central continuum source, and deduced a wider absorption profile than observed. The observed asymmetric absorption profile can therefore be explained by a clumpy, rotating HI gas disk seen partially in front of the central continuum source, or by ram-pressure pushing the neutral gas towards the center of the continuum source, triggering the AGN activity.
With MUSE, Chandra, VLA, ALMA and UVIT data from the GASP programme we study the multiphase baryonic components in a jellyfish galaxy (JW100) with a stellar mass 3.2 X 10^{11} M_sun hosting an AGN. We present its spectacular extraplanar tails of ionized and molecular gas, UV stellar light, X-ray and radio continuum emission. This galaxy represents an excellent laboratory to study the interplay between different gas phases and star formation, and the influence of gas stripping, gas heating, and AGN. We analyze the physical origin of the emission at different wavelengths in the tail, in particular in-situ star formation (related to Halpha, CO and UV emission), synchrotron emission from relativistic electrons (producing the radio continuum) and heating of the stripped interstellar medium (ISM) (responsible for the X-ray emission). We show the similarities and differences of the spatial distributions of ionized gas, molecular gas and UV light, and argue that the mismatch on small scales (1kpc) is due to different stages of the star formation process. We present the relation Halpha--X-ray surface brightness, which is steeper for star-forming regions than for diffuse ionised gas regions with high [OI]/Halpha ratio. We propose that ISM heating due to interaction with the intracluster medium (either for mixing, thermal conduction or shocks) is responsible for the X-ray tail, the observed [OI]-excess and the lack of star formation in the northern part of the tail. We also report the tentative discovery in the tail of the most distant (and among the brightest) currently known ULX, a point-like ultraluminous X-ray source commonly originating in a binary stellar system powered either by an intermediate-mass black hole or a magnetized neutron star.
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simulations of the formation of these outflows, considering the feedback from both the AGN and supernovae-driven winds. We find that a large-opening-angle AGN wind develops fountain structures that make the expanding gas to fall back. Furthermore, it exhausts the gas near the nuclear region, extinguishing star formation and accretion within a few 100.000 yr, which establishes the duty cycle of these outflows. The AGN wind accounts for the highest speed features in the outflow with velocities around 10.000 km s$^{-1}$ (as observed in UFOs), but these are not as cold and dense as required by observations of molecular outflows. The SNe-driven wind is the main responsible for the observed mass-loading of the outflows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا