No Arabic abstract
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simulations of the formation of these outflows, considering the feedback from both the AGN and supernovae-driven winds. We find that a large-opening-angle AGN wind develops fountain structures that make the expanding gas to fall back. Furthermore, it exhausts the gas near the nuclear region, extinguishing star formation and accretion within a few 100.000 yr, which establishes the duty cycle of these outflows. The AGN wind accounts for the highest speed features in the outflow with velocities around 10.000 km s$^{-1}$ (as observed in UFOs), but these are not as cold and dense as required by observations of molecular outflows. The SNe-driven wind is the main responsible for the observed mass-loading of the outflows.
We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit >1000 km/s outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach Sigma_SFR ~ 3000 Msun/yr/kpc^2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient to produce the high-velocity outflows we observe, without the need to invoke feedback from an active galactic nucleus.
We present results from a deep (174 ks) Chandra observation of the FR-II radio galaxy 3C 220.1, the central brightest cluster galaxy (BCG) of a $kT sim$ 4 keV cluster at $z=0.61$. The temperature of the hot cluster medium drops from $sim5.9$ keV to $sim3.9$ keV at $sim$ 35 kpc radius, while the temperature at smaller radii may be substantially lower. The central active galactic nucleus (AGN) outshines the whole cluster in X-rays, with a bolometric luminosity of $2.0times10^{46}$ erg s$^{-1}$ ($sim10$% of the Eddington rate). The system shows a pair of potential X-ray cavities $sim35$ kpc east and west of the nucleus. The cavity power is estimated within the range of $1.0times10^{44}$ erg s$^{-1}$ and $1.7times10^{45}$ erg s$^{-1}$, from different methods. The X-ray enhancements in the radio lobes could be due to inverse Compton emission, with a total 2-10 keV luminosity of $sim8.0times10^{42}$ erg s$^{-1}$. We compare 3C 220.1 with other cluster BCGs, including Cygnus A, as there are few BCGs in rich clusters hosting an FR-II galaxy. We also summarize the jet power of FR-II galaxies from different methods. The comparison suggests that the cavity power of FR-II galaxies likely under-estimates the jet power. The properties of 3C 220.1 suggest that it is at the transition stage from quasar-mode feedback to radio-mode feedback.
We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35$pm$15% of the observed EGB in the energy interval E_{gamma}=0.1-1 GeV, for ~73$pm$15% at E_{gamma}=1-10 GeV, and for ~60$pm$20% at E_{gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.
AGN feedback from supermassive black holes (SMBHs) at the center of early type galaxies is commonly invoked as the explanation for the quenching of star formation in these systems. The situation is complicated by the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to SMBHs two orders of magnitude more massive than observed. By using high-resolution 2D hydrodynamical simulations with radiative transport and star formation in state-of-the-art galaxy models, we show how the intermittent AGN feedback is highly structured on spatial and temporal scales, and how its effects are not only negative (shutting down the recurrent cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.
We describe a physical model of the outflows produced as a result of gas accretion onto a black hole, and the resultant changes to star formation rates and efficiencies in galaxies, using the Radio-SAGE semi-analytic galaxy formation model. We show that the ratio of outflow rate to SFR of galaxies is mainly driven by black hole mass and virial halo mass, and show that the SFR is higher than the outflow rate at low black hole masses. The model consistently reproduces the observed evolution of star formation rate density from z = 6 to z = 0, as well as the trend of the stellar mass - halo mass relations. We show the characteristic growth of massive galaxies influenced by AGN feedback at different redshifts. We find feedback to be prevalent in the most massive galaxy halos, inhibiting the cooling catastrophe.