No Arabic abstract
We propose a novel method of deep spatial matching (DSM) for image retrieval. Initial ranking is based on image descriptors extracted from convolutional neural network activations by global pooling, as in recent state-of-the-art work. However, the same sparse 3D activation tensor is also approximated by a collection of local features. These local features are then robustly matched to approximate the optimal alignment of the tensors. This happens without any network modification, additional layers or training. No local feature detection happens on the original image. No local feature descriptors and no visual vocabulary are needed throughout the whole process. We experimentally show that the proposed method achieves the state-of-the-art performance on standard benchmarks across different network architectures and different global pooling methods. The highest gain in performance is achieved when diffusion on the nearest-neighbor graph of global descriptors is initiated from spatially verified images.
The emergence of Internet of Things (IoT) applications requires intelligence on the edge. Microcontrollers provide a low-cost compute platform to deploy intelligent IoT applications using machine learning at scale, but have extremely limited on-chip memory and compute capability. To deploy computer vision on such devices, we need tiny vision models that fit within a few hundred kilobytes of memory footprint in terms of peak usage and model size on device storage. To facilitate the development of microcontroller friendly models, we present a new dataset, Visual Wake Words, that represents a common microcontroller vision use-case of identifying whether a person is present in the image or not, and provides a realistic benchmark for tiny vision models. Within a limited memory footprint of 250 KB, several state-of-the-art mobile models achieve accuracy of 85-90% on the Visual Wake Words dataset. We anticipate the proposed dataset will advance the research on tiny vision models that can push the pareto-optimal boundary in terms of accuracy versus memory usage for microcontroller applications.
The goal of this work is to automatically determine whether and when a word of interest is spoken by a talking face, with or without the audio. We propose a zero-shot method suitable for in the wild videos. Our key contributions are: (1) a novel convolutional architecture, KWS-Net, that uses a similarity map intermediate representation to separate the task into (i) sequence matching, and (ii) pattern detection, to decide whether the word is there and when; (2) we demonstrate that if audio is available, visual keyword spotting improves the performance both for a clean and noisy audio signal. Finally, (3) we show that our method generalises to other languages, specifically French and German, and achieves a comparable performance to English with less language specific data, by fine-tuning the network pre-trained on English. The method exceeds the performance of the previous state-of-the-art visual keyword spotting architecture when trained and tested on the same benchmark, and also that of a state-of-the-art lip reading method.
Multi-Layer Perceptrons (MLPs) make powerful functional representations for sampling and reconstruction problems involving low-dimensional signals like images,shapes and light fields. Recent works have significantly improved their ability to represent high-frequency content by using periodic activations or positional encodings. This often came at the expense of generalization: modern methods are typically optimized for a single signal. We present a new representation that generalizes to multiple instances and achieves state-of-the-art fidelity. We use a dual-MLP architecture to encode the signals. A synthesis network creates a functional mapping from a low-dimensional input (e.g. pixel-position) to the output domain (e.g. RGB color). A modulation network maps a latent code corresponding to the target signal to parameters that modulate the periodic activations of the synthesis network. We also propose a local-functional representation which enables generalization. The signals domain is partitioned into a regular grid,with each tile represented by a latent code. At test time, the signal is encoded with high-fidelity by inferring (or directly optimizing) the latent code-book. Our approach produces generalizable functional representations of images, videos and shapes, and achieves higher reconstruction quality than prior works that are optimized for a single signal.
The Bag--of--Visual--Words (BoVW) is a visual description technique that aims at shortening the semantic gap by partitioning a low--level feature space into regions of the feature space that potentially correspond to visual concepts and by giving more value to this space. In this paper we present a conceptual analysis of three major properties of language grammar and how they can be adapted to the computer vision and image understanding domain based on the bag of visual words paradigm. Evaluation of the visual grammar shows that a positive impact on classification accuracy and/or descriptor size is obtained when the technique are applied when the proposed techniques are applied.
Distributed visual analysis applications, such as mobile visual search or Visual Sensor Networks (VSNs) require the transmission of visual content on a bandwidth-limited network, from a peripheral node to a processing unit. Traditionally, a Compress-Then-Analyze approach has been pursued, in which sensing nodes acquire and encode the pixel-level representation of the visual content, that is subsequently transmitted to a sink node in order to be processed. This approach might not represent the most effective solution, since several analysis applications leverage a compact representation of the content, thus resulting in an inefficient usage of network resources. Furthermore, coding artifacts might significantly impact the accuracy of the visual task at hand. To tackle such limitations, an orthogonal approach named Analyze-Then-Compress has been proposed. According to such a paradigm, sensing nodes are responsible for the extraction of visual features, that are encoded and transmitted to a sink node for further processing. In spite of improved task efficiency, such paradigm implies the central processing node not being able to reconstruct a pixel-level representation of the visual content. In this paper we propose an effective compromise between the two paradigms, namely Hybrid-Analyze-Then-Compress (HATC) that aims at jointly encoding visual content and local image features. Furthermore, we show how a target tradeoff between image quality and task accuracy might be achieved by accurately allocating the bitrate to either visual content or local features.