Do you want to publish a course? Click here

From visual words to a visual grammar: using language modelling for image classification

317   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The Bag--of--Visual--Words (BoVW) is a visual description technique that aims at shortening the semantic gap by partitioning a low--level feature space into regions of the feature space that potentially correspond to visual concepts and by giving more value to this space. In this paper we present a conceptual analysis of three major properties of language grammar and how they can be adapted to the computer vision and image understanding domain based on the bag of visual words paradigm. Evaluation of the visual grammar shows that a positive impact on classification accuracy and/or descriptor size is obtained when the technique are applied when the proposed techniques are applied.



rate research

Read More

The emergence of Internet of Things (IoT) applications requires intelligence on the edge. Microcontrollers provide a low-cost compute platform to deploy intelligent IoT applications using machine learning at scale, but have extremely limited on-chip memory and compute capability. To deploy computer vision on such devices, we need tiny vision models that fit within a few hundred kilobytes of memory footprint in terms of peak usage and model size on device storage. To facilitate the development of microcontroller friendly models, we present a new dataset, Visual Wake Words, that represents a common microcontroller vision use-case of identifying whether a person is present in the image or not, and provides a realistic benchmark for tiny vision models. Within a limited memory footprint of 250 KB, several state-of-the-art mobile models achieve accuracy of 85-90% on the Visual Wake Words dataset. We anticipate the proposed dataset will advance the research on tiny vision models that can push the pareto-optimal boundary in terms of accuracy versus memory usage for microcontroller applications.
165 - Tianlang Chen , Jiebo Luo 2020
Existing image-text matching approaches typically infer the similarity of an image-text pair by capturing and aggregating the affinities between the text and each independent object of the image. However, they ignore the connections between the objects that are semantically related. These objects may collectively determine whether the image corresponds to a text or not. To address this problem, we propose a Dual Path Recurrent Neural Network (DP-RNN) which processes images and sentences symmetrically by recurrent neural networks (RNN). In particular, given an input image-text pair, our model reorders the image objects based on the positions of their most related words in the text. In the same way as extracting the hidden features from word embeddings, the model leverages RNN to extract high-level object features from the reordered object inputs. We validate that the high-level object features contain useful joint information of semantically related objects, which benefit the retrieval task. To compute the image-text similarity, we incorporate a Multi-attention Cross Matching Model into DP-RNN. It aggregates the affinity between objects and words with cross-modality guided attention and self-attention. Our model achieves the state-of-the-art performance on Flickr30K dataset and competitive performance on MS-COCO dataset. Extensive experiments demonstrate the effectiveness of our model.
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synthesized visual features using generative adversarial networks, guaranteeing semantic consistency between the semantic features and visual features remains very challenging. In this paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-to-visual learning process has adequate information to generate synthesized visual features. The approach also applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing synthesized visual features generation as well as new category prediction. We tabulate results on a number of benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art approaches.
141 - Weiming Hu , Chen Li , Xiaoyan Li 2021
GasHisSDB is a New Gastric Histopathology Subsize Image Database with a total of 245196 images. GasHisSDB is divided into 160*160 pixels sub-database, 120*120 pixels sub-database and 80*80 pixels sub-database. GasHisSDB is made to realize the function of valuating image classification. In order to prove that the methods of different periods in the field of image classification have discrepancies on GasHisSDB, we select a variety of classifiers for evaluation. Seven classical machine learning classifiers, three CNN classifiers and a novel transformer-based classifier are selected for testing on image classification tasks. GasHisSDB is available at the URL:https://github.com/NEUhwm/GasHisSDB.git.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appears across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا