No Arabic abstract
We introduce a novel approach to measure the behavior of a geometric operator before and after coarsening. By comparing eigenvectors of the input operator and its coarsened counterpart, we can quantitatively and visually analyze how well the spectral properties of the operator are maintained. Using this measure, we show that standard mesh simplification and algebraic coarsening techniques fail to maintain spectral properties. In response, we introduce a novel approach for spectral coarsening. We show that it is possible to significantly reduce the sampling density of an operator derived from a 3D shape without affecting the low-frequency eigenvectors. By marrying techniques developed within the algebraic multigrid and the functional maps literatures, we successfully coarsen a variety of isotropic and anisotropic operators while maintaining sparsity and positive semi-definiteness. We demonstrate the utility of this approach for applications including operator-sensitive sampling, shape matching, and graph pooling for convolutional neural networks.
We introduce a novel solver to significantly reduce the size of a geometric operator while preserving its spectral properties at the lowest frequencies. We use chordal decomposition to formulate a convex optimization problem which allows the user to control the operator sparsity pattern. This allows for a trade-off between the spectral accuracy of the operator and the cost of its application. We efficiently minimize the energy with a change of variables and achieve state-of-the-art results on spectral coarsening. Our solver further enables novel applications including volume-to-surface approximation and detaching the operator from the mesh, i.e., one can produce a mesh tailormade for visualization and optimize an operator separately for computation.
Differential operators are widely used in geometry processing for problem domains like spectral shape analysis, data interpolation, parametrization and mapping, and meshing. In addition to the ubiquitous cotangent Laplacian, anisotropic second-order operators, as well as higher-order operators such as the Bilaplacian, have been discretized for specialized applications. In this paper, we study a class of operators that generalizes the fourth-order Bilaplacian to support anisotropic behavior. The anisotropy is parametrized by a symmetric frame field, first studied in connection with quadrilateral and hexahedral meshing, which allows for fine-grained control of local directions of variation. We discretize these operators using a mixed finite element scheme, verify convergence of the discretization, study the behavior of the operator under pullback, and present potential applications.
Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.
The paper addresses the following problem: given a set of man-made shapes, e.g., chairs, can we quickly rank and explore the set of shapes with respect to a given avatar pose? Answering this question requires identifying which shapes are more suitable for the defined avatar and pose; and moreover, to provide fast preview of how to alter the input geometry to better fit the deformed shapes to the given avatar pose? The problem naturally links physical proportions of human body and its interaction with object shapes in an attempt to connect ergonomics with shape geometry. We designed an interaction system that allows users to explore shape collections using the deformation of human characters while at the same time providing interactive previews of how to alter the shapes to better fit the user-specified character. We achieve this by first mapping ergonomics guidelines into a set of simultaneous multi-part constraints based on target contacts; and then, proposing a novel contact-based deformation model to realize multi-contact constraints. We evaluate our framework on various chair models and validate the results via a small user study.
Low isometric distortion is often required for mesh parameterizations. A configuration of some vertices, where the distortion is concentrated, provides a way to mitigate isometric distortion, but determining the number and placement of these vertices is non-trivial. We call these vertices distortion points. We present a novel and automatic method to detect distortion points using a voting strategy. Our method integrates two components: candidate generation and candidate voting. Given a closed triangular mesh, we generate candidate distortion points by executing a three-step procedure repeatedly: (1) randomly cut an input to a disk topology; (2) compute a low conformal distortion parameterization; and (3) detect the distortion points. Finally, we count the candidate points and generate the final distortion points by voting. We demonstrate that our algorithm succeeds when employed on various closed meshes with a genus of zero or higher. The distortion points generated by our method are utilized in three applications, including planar parameterization, semi-automatic landmark correspondence, and isotropic remeshing. Compared to other state-of-the-art methods, our method demonstrates stronger practical robustness in distortion point detection.