Do you want to publish a course? Click here

Unified Adversarial Invariance

58   0   0.0 ( 0 )
 Added by Ayush Jaiswal
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a unified invariance framework for supervised neural networks that can induce independence to nuisance factors of data without using any nuisance annotations, but can additionally use labeled information about biasing factors to force their removal from the latent embedding for making fair predictions. Invariance to nuisance is achieved by learning a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, whereas that to biasing factors is brought about by penalizing the network if the latent embedding contains any information about them. We describe an adversarial instantiation of this framework and provide analysis of its working. Our model outperforms previous works at inducing invariance to nuisance factors without using any labeled information about such variables, and achieves state-of-the-art performance at learning independence to biasing factors in fairness settings.



rate research

Read More

Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reducing overfitting. We present a novel unsupervised invariance induction framework for neural networks that learns a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, without needing any labeled information about nuisance factors or domain knowledge. We describe an adversarial instantiation of this framework and provide analysis of its working. Our unsupervised model outperforms state-of-the-art methods, which are supervised, at inducing invariance to inherent nuisance factors, effectively using synthetic data augmentation to learn invariance, and domain adaptation. Our method can be applied to any prediction task, eg., binary/multi-class classification or regression, without loss of generality.
190 - Shupeng Gui 2019
Deep model compression has been extensively studied, and state-of-the-art methods can now achieve high compression ratios with minimal accuracy loss. This paper studies model compression through a different lens: could we compress models without hurting their robustness to adversarial attacks, in addition to maintaining accuracy? Previous literature suggested that the goals of robustness and compactness might sometimes contradict. We propose a novel Adversarially Trained Model Compression (ATMC) framework. ATMC constructs a unified constrained optimization formulation, where existing compression means (pruning, factorization, quantization) are all integrated into the constraints. An efficient algorithm is then developed. An extensive group of experiments are presented, demonstrating that ATMC obtains remarkably more favorable trade-off among model size, accuracy and robustness, over currently available alternatives in various settings. The codes are publicly available at: https://github.com/shupenggui/ATMC.
Shift invariance is a critical property of CNNs that improves performance on classification. However, we show that invariance to circular shifts can also lead to greater sensitivity to adversarial attacks. We first characterize the margin between classes when a shift-invariant linear classifier is used. We show that the margin can only depend on the DC component of the signals. Then, using results about infinitely wide networks, we show that in some simple cases, fully connected and shift-invariant neural networks produce linear decision boundaries. Using this, we prove that shift invariance in neural networks produces adversarial examples for the simple case of two classes, each consisting of a single image with a black or white dot on a gray background. This is more than a curiosity; we show empirically that with real datasets and realistic architectures, shift invariance reduces adversarial robustness. Finally, we describe initial experiments using synthetic data to probe the source of this connection.
In many machine learning problems the output should not depend on the order of the input. Such permutation invariant functions have been studied extensively recently. Here we argue that temporal architectures such as RNNs are highly relevant for such problems, despite the inherent dependence of RNNs on order. We show that RNNs can be regularized towards permutation invariance, and that this can result in compact models, as compared to non-recurrent architectures. We implement this idea via a novel form of stochastic regularization. Existing solutions mostly suggest restricting the learning problem to hypothesis classes which are permutation invariant by design. Our approach of enforcing permutation invariance via regularization gives rise to models which are textit{semi permutation invariant} (e.g. invariant to some permutations and not to others). We show that our method outperforms other permutation invariant approaches on synthetic and real world datasets.
We propose an approach to distinguish between correct and incorrect image classifications. Our approach can detect misclassifications which either occur $it{unintentionally}$ (natural errors), or due to $it{intentional~adversarial~attacks}$ (adversarial errors), both in a single $it{unified~framework}$. Our approach is based on the observation that correctly classified images tend to exhibit robust and consistent classifications under certain image transformations (e.g., horizontal flip, small image translation, etc.). In contrast, incorrectly classified images (whether due to adversarial errors or natural errors) tend to exhibit large variations in classification results under such transformations. Our approach does not require any modifications or retraining of the classifier, hence can be applied to any pre-trained classifier. We further use state of the art targeted adversarial attacks to demonstrate that even when the adversary has full knowledge of our method, the adversarial distortion needed for bypassing our detector is $it{no~longer~imperceptible~to~the~human~eye}$. Our approach obtains state-of-the-art results compared to previous adversarial detection methods, surpassing them by a large margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا