No Arabic abstract
Binospec is a high throughput, 370 to 1000 nm, imaging spectrograph that addresses two adjacent 8 by 15 fields of view. Binospec was commissioned in late 2017 at the f/5 focus of the 6.5m MMT and is now available to all MMT observers. Aperture masks cut from stainless steel with a laser cutter are used to define the entrance apertures that range from 15 long slits to hundreds of 2 slitlets. System throughputs, including the MMTs mirrors and the f/5 wide-field corrector peak at ~30%. Three reflection gratings, duplicated for the two beams, provide resolutions ($lambda$/$Delta lambda$) between 1300 and $>$5000 with a 1 wide slit. Two through-the-mask guiders are used for target acquisition, mask alignment, guiding, and precision offsets. A full-time Shack-Hartmann wave front sensor allows continuous adjustment of primary mirror support forces, telescope collimation and focus. Active flexure control maintains spectrograph alignment and focus under varying gravity and thermal conditions.
The MMT and Magellan infrared spectrograph (MMIRS) is a cryogenic multiple slit spectrograph operating in the wavelength range 0.9-2.4 micron. MMIRS refractive optics offer a 6.9 by 6.9 arcmin field of view for imaging with a spatial resolution of 0.2 arcsec per pixel on a HAWAII-2 array. For spectroscopy, MMIRS can be used with long slits up to 6.9 arcmin long, or with custom slit masks having slitlets distributed over a 4 by 6.9 arcmin area. A range of dispersers offer spectral resolutions of 800 to 3000. MMIRS is designed to be used at the f/5 foci of the MMT or Magellan Clay 6.5m telescopes. MMIRS was commissioned in 2009 at the MMT and has been in routine operation at the Magellan Clay Telescope since 2010. MMIRS is being used for a wide range of scientific investigations from exoplanet atmospheres to Ly-alpha emitters.
We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in idl as a stand-alone package and is publicly available in both stable and developme
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
We demonstrate a new approach to calibrating the spectral-spatial response of a wide-field spectrograph using a fibre etalon comb. Conventional wide-field instruments employed on front-line telescopes are mapped with a grid of diffraction-limited holes cut into a focal plane mask. The aberrated grid pattern in the image plane typically reveals n-symmetric (e.g. pincushion) distortion patterns over the field arising from the optical train. This approach is impractical in the presence of a dispersing element because the diffraction-limited spots in the focal plane are imaged as an array of overlapping spectra. Instead we propose a compact solution that builds on recent developments in fibre-based Fabry-Perot etalons. We introduce a novel approach to near-field illumination that exploits a 25cm commercial telescope and the propagation of skew rays in a multimode fibre. The mapping of the optical transfer function across the full field is represented accurately (<0.5% rms residual) by an orthonormal set of Chebyshev moments. Thus we are able to reconstruct the full 4Kx4K CCD image of the dispersed output from the optical fibres using this mapping, as we demonstrate. Our method removes one of the largest sources of systematic error in multi-object spectroscopy.
This paper describes the on-telescope performance of the Wide Field Spectrograph (WiFeS). The design characteristics of this instrument, at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) and mounted on the ANU 2.3m telescope at the Siding Spring Observatory has been already described in an earlier paper (Dopita et al. 2007). Here we describe the throughput, resolution and stability of the instrument, and describe some minor issues which have been encountered. We also give a description of the data reduction pipeline, and show some preliminary results.