Do you want to publish a course? Click here

Overcoming the absorption limit in high-harmonic generation from crystals

154   0   0.0 ( 0 )
 Added by Hanzhe Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electrons natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by allowing high-order harmonics generated from a periodic array of thin one-dimensional crystalline silicon ridge waveguides to propagate in the vacuum gaps between the ridges, thereby avoiding the high absorption loss of the bulk nonlinear material and resulting in a ~ 100-fold increase in propagation length. As the grating period is varied, each high-harmonic shows a different and marked modulation, indicating the onset of coherent addition which is otherwise suppressed in absorption-limited emission. By beating the absorption limit, our results pave the way for bright coherent short-wavelength sources and their implementation in nano-photonic devices.



rate research

Read More

91 - Yong Woo Kim 2019
Various interference effects are known to exist in the process of high harmonic generation (HHG) both at the single atom and macroscopic levels. In particular, the quantum path difference between the long and short trajectories of electron excursion causes the HHG yield to experience interference-based temporal and spectral modulations. In solids, due to additional phenomena such as multi-band superposition and crystal symmetry dependency, the HHG mechanism appears to be more complicated than in gaseous atoms in identifying accompanying interference phenomena. Here, we first report experimental data showing intensity-dependent spectral modulation and broadening of high harmonics observed from bulk sapphire. Then, by adopting theoretical simulation, the extraordinary observation is interpreted as a result of the quantum path interference between the long and short electron/hole trajectories. Specifically, the long trajectory undergoes an intensity-dependent redshift, which coherently combines with the short trajectory to exhibit spectral splitting in an anomalous way of inverse proportion to the driving laser intensity. This quantum interference may be extended to higher harmonics with increasing the laser intensity, underpinning the potential for precise control of the phase matching and modulation even in the extreme ultraviolet and soft X-ray regime. Further, this approach may act as a novel tool for probing arbitrary crystals so as to adjust the electron dynamics of higher harmonics for attosecond spectroscopy.
83 - Yu Song , Siqi Hu , Miao-Ling Lin 2018
We report the observations of unexpected layer-dependent, strong, and anisotropic second harmonic generations (SHGs) in atomically thin ReS2. Appreciable (negligible) SHGs are obtained from even (odd) numbers of ReS2 layers, which is opposite to the layer-dependence of SHGs in group VI transition metal dichalcogenides, such as MoS2 and WS2. The results are analyzed from ReS2s crystal structure, implying second harmonic polarizations generated from the interlayer coupling. Pumped by a telecomband laser, SHG from the bilayer ReS2 is almost one order of magnitude larger than that from the monolayer WS2. The estimated second-order nonlinear susceptibility of 900 pm/V is remarkably high among those reported in two-dimensional materials. The laser polarization dependence of ReS2s SHG is strongly anisotropic and indicates its distorted lattice structure with more unequal and non-zero second-order susceptibility elements.
215 - J. P. Huang , Y. C. Jian , 2006
On the basis of the Edward-Kornfeld formulation, we study the effective susceptibility of secondharmonic generation (SHG) in colloidal crystals, which are made of graded metallodielectric nanoparticles with an intrinsic SHG susceptibility suspended in a host liquid. We find a large enhancement and redshift of SHG responses, which arises from the periodic structure, local field effects and gradation in the metallic cores. The optimization of the Ewald-Kornfeld formulation is also investigated.
High-order harmonic generation (HHG) in isolated atoms and molecules has been widely utilized in extreme ultraviolet (XUV) photonics and attosecond pulse metrology. Recently, HHG has also been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruction of electronic band structures, as well as compact XUV light sources. Previous HHG studies are confined on crystalline solids; therefore decoupling the respective roles of long-range periodicity and high density has been challenging. Here, we report the first observation of HHG from amorphous fused silica. We decouple the role of long-range periodicity by comparing with crystal quartz, which contains same atomic constituents but exhibits long-range periodicity. Our results advance current understanding of strong-field processes leading to high harmonic generation in solids with implications in robust and compact coherent XUV light sources.
The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of optical BICs in waveguides and photonic crystals uncovered their topological properties, and the concept of quasi-BIC metasurfaces facilitated applications of strong light-matter interactions to biosensing, lasing, and low-order nonlinear processes. Here we employ BIC-empowered dielectric metasurfaces to generate efficiently high optical harmonics up to the 11th order. We optimize a BIC mode for the first few harmonics and observe a transition between perturbative and nonperturbative nonlinear regimes. We also suggest a general strategy for designing subwavelength structures with strong resonances and nonperturbative nonlinearities. Our work bridges the fields of perturbative and nonperturbative nonlinear optics on the subwavelength scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا