Do you want to publish a course? Click here

Spin-Layer- and Spin-Valley-Locking in CVD-Grown AA- and AB-Stacked Tungsten-Disulfide Bilayers

260   0   0.0 ( 0 )
 Added by Arash Rahimi-Iman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Valley-selective optical selection rules and a spin-valley locking in transition-metal dichalcogenide (TMDC) monolayers are at the heart of valleytronic physics, which exploits the valley degree of freedom and has been a major research topic in recent years. In contrast, valleytronic properties of TMDC bilayers have not been in the focus so much by now. Here, we report on the valleytronic properties and optical characterization of bilayers of WS2 as a representative TMDC material. In particular, we study the influence of the relative layer alignment in TMDC homo-bilayer samples on their polarization-dependent optical properties. Therefore, CVD-grown WS2 bilayer samples have been prepared that favor either the inversion symmetric AA stacking or AB stacking without inversion symmetry during synthesis. Subsequently, a detailed analysis of reflection contrast and photoluminescence spectra under different polarization conditions has been performed. We observe circular and linear dichroism of the photoluminescence that is more pronounced for the AB stacking configuration. Our experimental findings are supported by theoretical calculations showing that the observed dichroism can be linked to optical selection rules, that maintain the spin-valley locking in the AB-stacked WS2 bilayer, whereas a spin-layer-locking is present the inversion symmetric AA bilayer instead. Furthermore, our theoretical calculations predict a small relative shift of the excitonic resonances in both stacking configurations, which is also experimentally observed.



rate research

Read More

Transition metal dichalcogenides have been the primary materials of interest in the field of valleytronics for their potential in information storage, yet the limiting factor has been achieving long valley decoherence times. We explore the dynamics of four monolayer TMDCs (MoS$_2$, MoSe$_2$, WS$_2$, WSe$_2$) using ab initio calculations to describe electron-electron and electron-phonon interactions. By comparing calculations which both omit and include relativistic effects, we isolate the impact of spin-resolved spin-orbit coupling on transport properties. In our work, we find that spin-orbit coupling increases carrier lifetimes at the valence band edge by an order of magnitude due to spin-valley locking, with a proportional increase in the hole mobility at room temperature. At temperatures of 50~K, we find intervalley scattering times on the order of 100 ps, with a maximum value ~140 ps in WSe$_2$. Finally, we calculate excited-carrier generation profiles which indicate that direct transitions dominate across optical energies, even for WSe$_2$ which has an indirect band gap. Our results highlight the intriguing interplay between spin and valley degrees of freedom critical for valleytronic applications. Further, our work points towards interesting quantum properties on-demand in transition metal dichalcogenides that could be leveraged via driving spin, valley and phonon degrees of freedom.
52 - Yang Zhang , Trithep Devakul , 2021
While transition metal dichalcogenide (TMD) based moire materials have been shown to host various correlated electronic phenomena, topological states have not been experimentally observed until now. In this work, using first principles calculations and continuum modeling, we reveal the displacement field induced topological moire bands in AB-stacked TMD heterobilayer MoTe2/WSe2. Valley contrasting Chern bands with non-trivial spin texture are formed from interlayer hybridization between MoTe2 and WSe2 bands of nominally opposite spins. Our study establishes a recipe for creating topological bands in AB stacked TMD bilayers in general, which provides a highly tunable platform for realizing quantum spin Hall and interaction induced quantum anomalous Hall effects.
Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping enables observing an electromotive force produced by the inverse spin Hall effect (ISHE) of SLG. The spin Hall angle of SLG is estimated to be 6.1*10-7. The observed ISHE in SLG is ascribed to its non-negligible spin-orbit interaction in SLG.
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO$_2$ substrate based graphene devices, and obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and DYakonov-Perel mechanisms. The behaviour of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin injection polarization of the high-resistance contacts can be modulated by DC bias from -0.3 V to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features mark a distinctive spin injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.
In monolayer group-VI transition metal dichalcogenides (TMDC), charge carriers have spin and valley degrees of freedom, both associated with magnetic moments. On the other hand, the layer degree of freedom in multilayers is associated with electrical polarization. Here, we show that TMDC bilayers offer an unprecedented platform to realize a strong coupling between the spin, layer pseudospin, and valley degrees of freedom of holes. Such coupling not only gives rise to the spin Hall effect and spin circular dichroism in inversion symmetric bilayer, but also leads to a variety of magnetoelectric effects permitting quantum manipulation of these electronic degrees of freedom. Oscillating electric and magnetic fields can both drive the hole spin resonance where the two fields have valley-dependent interference, making possible a prototype interplay between the spin and valley as information carriers for potential valley-spintronic applications. We show how to realize quantum gates on the spin qubit controlled by the valley bit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا